2 code implementations • 28 Mar 2024 • Ezequiel de la Rosa, Mauricio Reyes, Sook-Lei Liew, Alexandre Hutton, Roland Wiest, Johannes Kaesmacher, Uta Hanning, Arsany Hakim, Richard Zubal, Waldo Valenzuela, David Robben, Diana M. Sima, Vincenzo Anania, Arne Brys, James A. Meakin, Anne Mickan, Gabriel Broocks, Christian Heitkamp, Shengbo Gao, Kongming Liang, Ziji Zhang, Md Mahfuzur Rahman Siddiquee, Andriy Myronenko, Pooya Ashtari, Sabine Van Huffel, Hyun-su Jeong, Chi-ho Yoon, Chulhong Kim, Jiayu Huo, Sebastien Ourselin, Rachel Sparks, Albert Clèrigues, Arnau Oliver, Xavier Lladó, Liam Chalcroft, Ioannis Pappas, Jeroen Bertels, Ewout Heylen, Juliette Moreau, Nima Hatami, Carole Frindel, Abdul Qayyum, Moona Mazher, Domenec Puig, Shao-Chieh Lin, Chun-Jung Juan, Tianxi Hu, Lyndon Boone, Maged Goubran, Yi-Jui Liu, Susanne Wegener, Florian Kofler, Ivan Ezhov, Suprosanna Shit, Moritz R. Hernandez Petzsche, Bjoern Menze, Jan S. Kirschke, Benedikt Wiestler
We address this gap by presenting a novel ensemble algorithm derived from the 2022 Ischemic Stroke Lesion Segmentation (ISLES) challenge.
1 code implementation • 28 Mar 2023 • Zifu Wang, Teodora Popordanoska, Jeroen Bertels, Robin Lemmens, Matthew B. Blaschko
As a result, we obtain superior Dice scores and model calibration, which supports the wider adoption of DMLs in practice.
1 code implementation • 17 Nov 2022 • Jeroen Bertels, David Robben, Robin Lemmens, Dirk Vandermeulen
We know that both the CNN mapping function and the sampling scheme are of paramount importance for CNN-based image analysis.
no code implementations • 17 Nov 2022 • Jeroen Bertels, David Robben, Robin Lemmens, Dirk Vandermeulen
In this article, we look into some essential aspects of convolutional neural networks (CNNs) with the focus on medical image segmentation.
no code implementations • 9 Nov 2022 • Jeroen Bertels, David Robben, Dirk Vandermeulen, Robin Lemmens
This article focuses on the control center of each human body: the brain.
no code implementations • 8 Nov 2022 • Jeroen Bertels, David Robben, Dirk Vandermeulen, Paul Suetens
The clinical interest is often to measure the volume of a structure, which is typically derived from a segmentation.
1 code implementation • 26 Sep 2022 • Sophie Ostmeier, Brian Axelrod, Jeroen Bertels, Fabian Isensee, Maarten G. Lansberg, Soren Christensen, Gregory W. Albers, Li-Jia Li, Jeremy J. Heit
We study how uncertain, small, and empty reference annotations influence the value of metrics for medical image segmentation on an in-house data set regardless of the model.
2 code implementations • 19 Jul 2022 • Sofie Tilborghs, Jeroen Bertels, David Robben, Dirk Vandermeulen, Frederik Maes
We find and propose heuristic combinations of $\Phi$ and $\epsilon$ that work in a segmentation setting with either missing or empty labels.
1 code implementation • 23 Dec 2021 • Teodora Popordanoska, Jeroen Bertels, Dirk Vandermeulen, Frederik Maes, Matthew B. Blaschko
This has led to a renewed focus on calibrated predictions in the medical imaging and broader machine learning communities.
no code implementations • 23 Nov 2020 • Abel Díaz Berenguer, Hichem Sahli, Boris Joukovsky, Maryna Kvasnytsia, Ine Dirks, Mitchel Alioscha-Perez, Nikos Deligiannis, Panagiotis Gonidakis, Sebastián Amador Sánchez, Redona Brahimetaj, Evgenia Papavasileiou, Jonathan Cheung-Wai Chana, Fei Li, Shangzhen Song, Yixin Yang, Sofie Tilborghs, Siri Willems, Tom Eelbode, Jeroen Bertels, Dirk Vandermeulen, Frederik Maes, Paul Suetens, Lucas Fidon, Tom Vercauteren, David Robben, Arne Brys, Dirk Smeets, Bart Ilsen, Nico Buls, Nina Watté, Johan de Mey, Annemiek Snoeckx, Paul M. Parizel, Julien Guiot, Louis Deprez, Paul Meunier, Stefaan Gryspeerdt, Kristof De Smet, Bart Jansen, Jef Vandemeulebroucke
Our motivating application is a real-world problem: COVID-19 classification from CT imaging, for which we present an explainable Deep Learning approach based on a semi-supervised classification pipeline that employs variational autoencoders to extract efficient feature embedding.
no code implementations • 26 Oct 2020 • Tom Eelbode, Jeroen Bertels, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops, Matthew B. Blaschko
We verify these results empirically in an extensive validation on six medical segmentation tasks and can confirm that metric-sensitive losses are superior to cross-entropy based loss functions in case of evaluation with Dice Score or Jaccard Index.
3 code implementations • 29 Jul 2020 • Sofie Tilborghs, Ine Dirks, Lucas Fidon, Siri Willems, Tom Eelbode, Jeroen Bertels, Bart Ilsen, Arne Brys, Adriana Dubbeldam, Nico Buls, Panagiotis Gonidakis, Sebastián Amador Sánchez, Annemiek Snoeckx, Paul M. Parizel, Johan de Mey, Dirk Vandermeulen, Tom Vercauteren, David Robben, Dirk Smeets, Frederik Maes, Jef Vandemeulebroucke, Paul Suetens
There is an increasing number of studies that propose to use deep learning to provide fast and accurate quantification of COVID-19 using chest CT scans.
no code implementations • 6 Nov 2019 • Jeroen Bertels, David Robben, Dirk Vandermeulen, Paul Suetens
Segmentation is a fundamental task in medical image analysis.
1 code implementation • 5 Nov 2019 • Jeroen Bertels, Tom Eelbode, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops, Matthew Blaschko
First, we investigate the theoretical differences in a risk minimization framework and question the existence of a weighted cross-entropy loss with weights theoretically optimized to surrogate Dice or Jaccard.