no code implementations • 23 Apr 2025 • Jeffrey Smith, Taisei Fujii, Jesse Cranney, Charles Gretton
In this paper, we develop a novel data-driven approach, adapting machine learning methods from computer vision for Fried parameter estimation from a single Shack-Hartmann or pyramid wavefront sensor image.
no code implementations • 2 Aug 2024 • Kartheik G. Iyer, Mikaeel Yunus, Charles O'Neill, Christine Ye, Alina Hyk, Kiera McCormick, Ioana Ciuca, John F. Wu, Alberto Accomazzi, Simone Astarita, Rishabh Chakrabarty, Jesse Cranney, Anjalie Field, Tirthankar Ghosal, Michele Ginolfi, Marc Huertas-Company, Maja Jablonska, Sandor Kruk, Huiling Liu, Gabriel Marchidan, Rohit Mistry, J. P. Naiman, J. E. G. Peek, Mugdha Polimera, Sergio J. Rodriguez, Kevin Schawinski, Sanjib Sharma, Michael J. Smith, Yuan-Sen Ting, Mike Walmsley
The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge.
1 code implementation • 30 May 2024 • John F. Wu, Alina Hyk, Kiera McCormick, Christine Ye, Simone Astarita, Elina Baral, Jo Ciuca, Jesse Cranney, Anjalie Field, Kartheik Iyer, Philipp Koehn, Jenn Kotler, Sandor Kruk, Michelle Ntampaka, Charles O'Neill, Joshua E. G. Peek, Sanjib Sharma, Mikaeel Yunus
It is imperative to understand how researchers interact with these models and how scientific sub-communities like astronomy might benefit from them.
no code implementations • 12 Sep 2023 • Tuan Dung Nguyen, Yuan-Sen Ting, Ioana Ciucă, Charlie O'Neill, Ze-Chang Sun, Maja Jabłońska, Sandor Kruk, Ernest Perkowski, Jack Miller, Jason Li, Josh Peek, Kartheik Iyer, Tomasz Różański, Pranav Khetarpal, Sharaf Zaman, David Brodrick, Sergio J. Rodríguez Méndez, Thang Bui, Alyssa Goodman, Alberto Accomazzi, Jill Naiman, Jesse Cranney, Kevin Schawinski, UniverseTBD
Large language models excel in many human-language tasks but often falter in highly specialized domains like scholarly astronomy.