Search Results for author: Ji Won Park

Found 5 papers, 2 papers with code

Multi-segment preserving sampling for deep manifold sampler

no code implementations9 May 2022 Daniel Berenberg, Jae Hyeon Lee, Simon Kelow, Ji Won Park, Andrew Watkins, Vladimir Gligorijević, Richard Bonneau, Stephen Ra, Kyunghyun Cho

We introduce an alternative approach to this guided sampling procedure, multi-segment preserving sampling, that enables the direct inclusion of domain-specific knowledge by designating preserved and non-preserved segments along the input sequence, thereby restricting variation to only select regions.

Language Modelling

Inferring Black Hole Properties from Astronomical Multivariate Time Series with Bayesian Attentive Neural Processes

no code implementations2 Jun 2021 Ji Won Park, Ashley Villar, Yin Li, Yan-Fei Jiang, Shirley Ho, Joshua Yao-Yu Lin, Philip J. Marshall, Aaron Roodman

Among the most extreme objects in the Universe, active galactic nuclei (AGN) are luminous centers of galaxies where a black hole feeds on surrounding matter.

Time Series

Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant

2 code implementations30 Nov 2020 Ji Won Park, Sebastian Wagner-Carena, Simon Birrer, Philip J. Marshall, Joshua Yao-Yu Lin, Aaron Roodman

The computation time for the entire pipeline -- including the training set generation, BNN training, and $H_0$ inference -- translates to 9 minutes per lens on average for 200 lenses and converges to 6 minutes per lens as the sample size is increased.

Hierarchical Inference With Bayesian Neural Networks: An Application to Strong Gravitational Lensing

1 code implementation26 Oct 2020 Sebastian Wagner-Carena, Ji Won Park, Simon Birrer, Philip J. Marshall, Aaron Roodman, Risa H. Wechsler

We show that the posterior PDFs are sufficiently accurate (i. e., statistically consistent with the truth) across a wide variety of power-law elliptical lens mass distributions.

Network reinforcement driven drug repurposing for COVID-19 by exploiting disease-gene-drug associations

no code implementations12 Aug 2020 Yonghyun Nam, Jae-Seung Yun, Seung Mi Lee, Ji Won Park, Ziqi Chen, Brian Lee, Anurag Verma, Xia Ning, Li Shen, Dokyoon Kim

To reduce trial and error in finding treatments for COVID-19, we propose building a network-based drug repurposing framework to prioritize repurposable drugs.

Cannot find the paper you are looking for? You can Submit a new open access paper.