no code implementations • SemEval (NAACL) 2022 • Jia Fu, Zhen Gan, Zhucong Li, Sirui Li, Dianbo Sui, Yubo Chen, Kang Liu, Jun Zhao
This paper describes our approach to develop a complex named entity recognition system in SemEval 2022 Task 11: MultiCoNER Multilingual Complex Named Entity Recognition, Track 9 - Chinese.
no code implementations • SMM4H (COLING) 2022 • Jia Fu, Sirui Li, Hui Ming Yuan, Zhucong Li, Zhen Gan, Yubo Chen, Kang Liu, Jun Zhao, Shengping Liu
This paper presents a description of our system in SMM4H-2022, where we participated in task 1a, task 4, and task 6 to task 10.
1 code implementation • 31 Oct 2024 • Jia Fu, Xiao Zhang, Sepideh Pashami, Fatemeh Rahimian, Anders Holst
In the ever-evolving adversarial machine learning landscape, developing effective defenses against patch attacks has become a critical challenge, necessitating reliable solutions to safeguard real-world AI systems.
1 code implementation • 26 Sep 2024 • Kunyu Peng, Di Wen, Kailun Yang, Ao Luo, Yufan Chen, Jia Fu, M. Saquib Sarfraz, Alina Roitberg, Rainer Stiefelhagen
In this paper, we observe that an adaptive domain scheduler benefits more in OSDG compared with prefixed sequential and random domain schedulers.
1 code implementation • 2 Jul 2024 • Kunyu Peng, Jia Fu, Kailun Yang, Di Wen, Yufan Chen, Ruiping Liu, Junwei Zheng, Jiaming Zhang, M. Saquib Sarfraz, Rainer Stiefelhagen, Alina Roitberg
Since these existing methods underperform on RAVAR, we introduce RefAtomNet -- a novel cross-stream attention-driven method specialized for the unique challenges of RAVAR: the need to interpret a textual referring expression for the targeted individual, utilize this reference to guide the spatial localization and harvest the prediction of the atomic actions for the referring person.
no code implementations • 27 Jun 2024 • Jia Fu, Xiaoting Qin, Fangkai Yang, Lu Wang, Jue Zhang, QIngwei Lin, Yubo Chen, Dongmei Zhang, Saravan Rajmohan, Qi Zhang
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems.
no code implementations • 3 Jun 2024 • Zixuan Dong, Baoyun Peng, YuFei Wang, Jia Fu, Xiaodong Wang, Yongxue Shan, Xin Zhou
Finally, the exploration results are fed to LLMs for self-reflection to further improve the global planning and efficient KG exploration.
no code implementations • 8 Feb 2024 • Kelly Payette, Céline Steger, Roxane Licandro, Priscille de Dumast, Hongwei Bran Li, Matthew Barkovich, Liu Li, Maik Dannecker, Chen Chen, Cheng Ouyang, Niccolò McConnell, Alina Miron, Yongmin Li, Alena Uus, Irina Grigorescu, Paula Ramirez Gilliland, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Haoyu Wang, Ziyan Huang, Jin Ye, Mireia Alenyà, Valentin Comte, Oscar Camara, Jean-Baptiste Masson, Astrid Nilsson, Charlotte Godard, Moona Mazher, Abdul Qayyum, Yibo Gao, Hangqi Zhou, Shangqi Gao, Jia Fu, Guiming Dong, Guotai Wang, ZunHyan Rieu, HyeonSik Yang, Minwoo Lee, Szymon Płotka, Michal K. Grzeszczyk, Arkadiusz Sitek, Luisa Vargas Daza, Santiago Usma, Pablo Arbelaez, Wenying Lu, WenHao Zhang, Jing Liang, Romain Valabregue, Anand A. Joshi, Krishna N. Nayak, Richard M. Leahy, Luca Wilhelmi, Aline Dändliker, Hui Ji, Antonio G. Gennari, Anton Jakovčić, Melita Klaić, Ana Adžić, Pavel Marković, Gracia Grabarić, Gregor Kasprian, Gregor Dovjak, Milan Rados, Lana Vasung, Meritxell Bach Cuadra, Andras Jakab
The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
1 code implementation • 15 Dec 2023 • Xiangde Luo, Jia Fu, Yunxin Zhong, Shuolin Liu, Bing Han, Mehdi Astaraki, Simone Bendazzoli, Iuliana Toma-Dasu, Yiwen Ye, Ziyang Chen, Yong Xia, Yanzhou Su, Jin Ye, Junjun He, Zhaohu Xing, Hongqiu Wang, Lei Zhu, Kaixiang Yang, Xin Fang, Zhiwei Wang, Chan Woong Lee, Sang Joon Park, Jaehee Chun, Constantin Ulrich, Klaus H. Maier-Hein, Nchongmaje Ndipenoch, Alina Miron, Yongmin Li, Yimeng Zhang, Yu Chen, Lu Bai, Jinlong Huang, Chengyang An, Lisheng Wang, Kaiwen Huang, Yunqi Gu, Tao Zhou, Mu Zhou, Shichuan Zhang, Wenjun Liao, Guotai Wang, Shaoting Zhang
The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis.
1 code implementation • 24 Aug 2023 • Jia Fu, Jiarui Tan, Wenjie Yin, Sepideh Pashami, Mårten Björkman
Motion analysis of improvised dance can be challenging due to its unique dynamics.
no code implementations • 20 Jun 2023 • Jia Fu, Tao Lu, Shaoting Zhang, Guotai Wang
To this end, we propose a novel weakly-supervised method with image-level labels based on semantic features and context information exploration.
1 code implementation • 2 Sep 2019 • Yuanyou Xu, Kaiwei Wang, Kailun Yang, Dongming Sun, Jia Fu
In addition, it has been shown that by using panoramic images with a 180 degree FoV as training data the model has better performance.