1 code implementation • 8 Oct 2023 • Song Guo, Jiahang Xu, Li Lyna Zhang, Mao Yang
To this end, Compresso prunes LLaMA-7B to 5. 4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2. 62%.
1 code implementation • 26 Jun 2023 • Junyan Li, Li Lyna Zhang, Jiahang Xu, Yujing Wang, Shaoguang Yan, Yunqing Xia, Yuqing Yang, Ting Cao, Hao Sun, Weiwei Deng, Qi Zhang, Mao Yang
Deploying pre-trained transformer models like BERT on downstream tasks in resource-constrained scenarios is challenging due to their high inference cost, which grows rapidly with input sequence length.
1 code implementation • ICCV 2023 • Chen Tang, Li Lyna Zhang, Huiqiang Jiang, Jiahang Xu, Ting Cao, Quanlu Zhang, Yuqing Yang, Zhi Wang, Mao Yang
However, prior supernet training methods that rely on uniform sampling suffer from the gradient conflict issue: the sampled subnets can have vastly different model sizes (e. g., 50M vs. 2G FLOPs), leading to different optimization directions and inferior performance.
1 code implementation • ICCV 2023 • Li Lyna Zhang, Xudong Wang, Jiahang Xu, Quanlu Zhang, Yujing Wang, Yuqing Yang, Ningxin Zheng, Ting Cao, Mao Yang
The combination of Neural Architecture Search (NAS) and quantization has proven successful in automatically designing low-FLOPs INT8 quantized neural networks (QNN).
no code implementations • 10 Aug 2022 • Kaitao Song, Teng Wan, Bixia Wang, Huiqiang Jiang, Luna Qiu, Jiahang Xu, Liping Jiang, Qun Lou, Yuqing Yang, Dongsheng Li, Xudong Wang, Lili Qiu
Specifically, we first pre-train an encoder-decoder framework in an automatic speech recognition (ASR) objective by using speech-to-text dataset, and then fine-tune ASR encoder on the cleft palate dataset for hypernasality estimation.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 22 Jun 2020 • Xiahai Zhuang, Jiahang Xu, Xinzhe Luo, Chen Chen, Cheng Ouyang, Daniel Rueckert, Victor M. Campello, Karim Lekadir, Sulaiman Vesal, Nishant Ravikumar, Yashu Liu, Gongning Luo, Jingkun Chen, Hongwei Li, Buntheng Ly, Maxime Sermesant, Holger Roth, Wentao Zhu, Jiexiang Wang, Xinghao Ding, Xinyue Wang, Sen yang, Lei LI
In addition, the paired MS-CMR images could enable algorithms to combine the complementary information from the other sequences for the segmentation of LGE CMR.
no code implementations • 23 Aug 2019 • Yechong Huang, Tao Song, Jiahang Xu, Yinan Chen, Xiahai Zhuang
We then embed the KLDivNet into a registration network to achieve the unsupervised deformable registration for multi-modality images.
no code implementations • 26 Feb 2019 • Jiahang Xu, Fangyang Jiao, Yechong Huang, Xinzhe Luo, Qian Xu, Ling Li, Xueling Liu, Chuantao Zuo, Ping Wu, Xiahai Zhuang
Methods: In this paper, we proposed an automatic, end-to-end, multi-modality diagnosis framework, including segmentation, registration, feature generation and machine learning, to process the information of the striatum for the diagnosis of PD.
no code implementations • 26 Feb 2019 • Yechong Huang, Jiahang Xu, Yuncheng Zhou, Tong Tong, Xiahai Zhuang, the Alzheimer's Disease Neuroimaging Initiative
In this paper, we propose a novel convolutional neural network (CNN) to fuse the multi-modality information including T1-MRI and FDG-PDT images around the hippocampal area for the diagnosis of AD.