no code implementations • CCL 2022 • Mengqing Guo, Jiali Li, Jishun Zhao, Shucheng Zhu, Ying Liu, Pengyuan Liu
“尽管悲观者认为, 职场中永远不可能存在性别平等。但随着人们观念的转变, 愈来愈多的人们相信, 职业的选择应只与个人能力相匹配, 而不应由个体的性别决定。目前已经发现自然语言处理的各个任务中都存在着职业性别偏见。但这些研究往往只针对特定的英文任务, 缺乏针对中文的、综合多任务的职业性别偏见测量研究。本文基于霍兰德职业模型, 从中文自然语言处理中常见的三个任务出发, 测量了词向量、共指消解和文本生成中的职业性别偏见, 发现不同任务中的职业性别偏见既有一定的共性, 又存在着独特的差异性。总体来看, 不同任务中的职业性别偏见反映了现实生活中人们对于不同性别所选择职业的刻板印象。此外, 在设计不同任务的偏见测量指标时, 还需要考虑如语体、词序等语言学要素的影响。”
no code implementations • NAACL (GeBNLP) 2022 • Jiali Li, Shucheng Zhu, Ying Liu, Pengyuan Liu
The results reveal that these grammatical gender-neutral Chinese word embeddings show a certain gender bias, which is consistent with the mainstream society’s perception and judgment of gender.
1 code implementation • 9 Dec 2024 • Qian Zhang, Panfeng Chen, Jiali Li, Linkun Feng, Shuyu Liu, Heng Zhao, Mei Chen, Hui Li, Yanhao Wang
Through an in-depth analysis of experimental results, we offer insights into the ability of LLMs to answer pediatric questions in the Chinese context, highlighting their limitations for further improvements.
1 code implementation • 28 May 2024 • Zhiyao Luo, Mingcheng Zhu, Fenglin Liu, Jiali Li, Yangchen Pan, Jiandong Zhou, Tingting Zhu
Our experiments reveal varying degrees of performance degradation among RL algorithms in the presence of noise and patient variability, with some algorithms failing to converge.
no code implementations • 20 Feb 2024 • Yizhi Li, Ge Zhang, Xingwei Qu, Jiali Li, Zhaoqun Li, Zekun Wang, Hao Li, Ruibin Yuan, Yinghao Ma, Kai Zhang, Wangchunshu Zhou, Yiming Liang, Lei Zhang, Lei Ma, Jiajun Zhang, Zuowen Li, Stephen W. Huang, Chenghua Lin, Jie Fu
The advancement of large language models (LLMs) has enhanced the ability to generalize across a wide range of unseen natural language processing (NLP) tasks through instruction-following.
no code implementations • 7 Feb 2024 • Nung Siong Lai, Yi Shen Tew, Xialin Zhong, Jun Yin, Jiali Li, Binhang Yan, Xiaonan Wang
In this article, we demonstrate the application of this AI workflow in the optimization of catalyst synthesis for ammonia production.
no code implementations • 17 Nov 2022 • Ahmad Chaddad, Qizong Lu, Jiali Li, Yousef Katib, Reem Kateb, Camel Tanougast, Ahmed Bouridane, Ahmed Abdulkadir
(2) Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains.
no code implementations • 5 Jun 2022 • Ahmad Chaddad, Jiali Li, Qizong Lu, Yujie Li, Idowu Paul Okuwobi, Camel Tanougast, Christian Desrosiers, Tamim Niazi
With AI, new radiomic models using the deep learning techniques will be also described.
no code implementations • 27 Oct 2020 • Xiaoli Liu, Yang Xu, Jiali Li, Xuanwei Ong, Salwa Ali Ibrahim, Tonio Buonassisi, Xiaonan Wang
Deep neural network is further applied to develop regression model which demonstrated the well performed prediction on both the original and generated data with a similar distribution.
1 code implementation • 15 May 2020 • Zekun Ren, Siyu Isaac Parker Tian, Juhwan Noh, Felipe Oviedo, Guangzong Xing, Jiali Li, Qiaohao Liang, Ruiming Zhu, Armin G. Aberle, Shijing Sun, Xiaonan Wang, Yi Liu, Qianxiao Li, Senthilnath Jayavelu, Kedar Hippalgaonkar, Yousung Jung, Tonio Buonassisi
Realizing general inverse design could greatly accelerate the discovery of new materials with user-defined properties.