no code implementations • IWSLT (ACL) 2022 • Daniel Zhang, Jiang Yu, Pragati Verma, Ashwinkumar Ganesan, Sarah Campbell
This paper describes Amazon Alexa AI’s implementation for the IWSLT 2022 shared task on formality control.
no code implementations • 2 Dec 2024 • Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Luis F. Gomez, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti
In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
1 code implementation • 2 Aug 2024 • Zidu Wang, Xiangyu Zhu, Jiang Yu, Tianshuo Zhang, Zhen Lei
Furthermore, S2TD-Face introduces a texture control module utilizing text prompts to select the most suitable textures from a library and seamlessly integrate them into the geometry, resulting in a 3D detailed face with controllable texture.
2 code implementations • 16 Apr 2024 • Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti
Synthetic data is gaining increasing relevance for training machine learning models.