no code implementations • 29 Oct 2024 • Renze Lou, Hanzi Xu, Sijia Wang, Jiangshu Du, Ryo Kamoi, Xiaoxin Lu, Jian Xie, Yuxuan Sun, Yusen Zhang, Jihyun Janice Ahn, Hongchao Fang, Zhuoyang Zou, Wenchao Ma, Xi Li, Kai Zhang, Congying Xia, Lifu Huang, Wenpeng Yin
Numerous studies have assessed the proficiency of AI systems, particularly large language models (LLMs), in facilitating everyday tasks such as email writing, question answering, and creative content generation.
1 code implementation • 24 Jun 2024 • Jiangshu Du, Yibo Wang, Wenting Zhao, Zhongfen Deng, Shuaiqi Liu, Renze Lou, Henry Peng Zou, Pranav Narayanan Venkit, Nan Zhang, Mukund Srinath, Haoran Ranran Zhang, Vipul Gupta, Yinghui Li, Tao Li, Fei Wang, Qin Liu, Tianlin Liu, Pengzhi Gao, Congying Xia, Chen Xing, Jiayang Cheng, Zhaowei Wang, Ying Su, Raj Sanjay Shah, Ruohao Guo, Jing Gu, Haoran Li, Kangda Wei, ZiHao Wang, Lu Cheng, Surangika Ranathunga, Meng Fang, Jie Fu, Fei Liu, Ruihong Huang, Eduardo Blanco, Yixin Cao, Rui Zhang, Philip S. Yu, Wenpeng Yin
This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability.
1 code implementation • 23 Jun 2024 • Hanzi Xu, Renze Lou, Jiangshu Du, Vahid Mahzoon, Elmira Talebianaraki, Zhuoan Zhou, Elizabeth Garrison, Slobodan Vucetic, Wenpeng Yin
We define this task as Classify-w/o-Gold and propose it as a new testbed for LLMs.
1 code implementation • 28 Feb 2024 • Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, Yihao Feng, ran Xu, Wenpeng Yin, Caiming Xiong
This paper presents FoFo, a pioneering benchmark for evaluating large language models' (LLMs) ability to follow complex, domain-specific formats, a crucial yet underexamined capability for their application as AI agents.
no code implementations • 17 Dec 2023 • Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Qingyang Wu, Zhongfen Deng, Jiangshu Du, Shuaiqi Liu, Yunlong Xu, Philip S. Yu
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language, transforming them into structured outputs that combine elements of both natural language and intent/slot tags.
no code implementations • 7 Sep 2023 • Jiangshu Du, Congying Xia, Wenpeng Yin, TingTing Liang, Philip S. Yu
In intent detection tasks, leveraging meaningful semantic information from intent labels can be particularly beneficial for few-shot scenarios.
1 code implementation • 1 Dec 2022 • Jiangshu Du, Wenpeng Yin, Congying Xia, Philip S. Yu
To deal with the two issues, this work first proposes a contextualized TE model (Context-TE) by appending other k options as the context of the current (P, H) modeling.
1 code implementation • 13 Oct 2021 • Jiangshu Du, Yingtong Dou, Congying Xia, Limeng Cui, Jing Ma, Philip S. Yu
The COVID-19 pandemic poses a great threat to global public health.