1 code implementation • 24 Jan 2025 • Zhongyi Shui, Jianpeng Zhang, Weiwei Cao, Sinuo Wang, Ruizhe Guo, Le Lu, Lin Yang, Xianghua Ye, Tingbo Liang, Qi Zhang, Ling Zhang
In this paper, we propose a fine-grained vision-language model (fVLM) for anatomy-level CT image interpretation.
1 code implementation • 6 Nov 2024 • Pedro R. A. S. Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Zifu Wang, Jieneng Chen, Yu-Cheng Chou, Yannick Kirchhoff, Maximilian Rokuss, Ziyan Huang, Jin Ye, Junjun He, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus H. Maier-Hein, Paul Jaeger, Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia, Zhaohu Xing, Lei Zhu, Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof, Pengcheng Shi, Ting Ma, Yuxin Du, Fan Bai, Tiejun Huang, Bo Zhao, Haonan Wang, Xiaomeng Li, Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej A. Mazurowski, Saumya Gupta, Linshan Wu, Jiaxin Zhuang, Hao Chen, Holger Roth, Daguang Xu, Matthew B. Blaschko, Sergio Decherchi, Andrea Cavalli, Alan L. Yuille, Zongwei Zhou
We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
1 code implementation • 8 Oct 2024 • Yiwen Ye, Ziyang Chen, Jianpeng Zhang, Yutong Xie, Yong Xia
In this paper, we introduce MedUniSeg, a prompt-driven universal segmentation model designed for 2D and 3D multi-task segmentation across diverse modalities and domains.
no code implementations • 14 Jun 2024 • Yujian Hu, Yilang Xiang, Yan-Jie Zhou, Yangyan He, Shifeng Yang, Xiaolong Du, Chunlan Den, Youyao Xu, Gaofeng Wang, Zhengyao Ding, Jingyong Huang, Wenjun Zhao, Xuejun Wu, Donglin Li, Qianqian Zhu, Zhenjiang Li, Chenyang Qiu, Ziheng Wu, Yunjun He, Chen Tian, Yihui Qiu, Zuodong Lin, Xiaolong Zhang, Yuan He, Zhenpeng Yuan, Xiaoxiang Zhou, Rong Fan, Ruihan Chen, Wenchao Guo, Jianpeng Zhang, Tony C. W. Mok, Zi Li, Le Lu, Dehai Lang, Xiaoqiang Li, Guofu Wang, Wei Lu, Zhengxing Huang, Minfeng Xu, HongKun Zhang
Our AI model performed well on non-contrast CT at all applicable early stages of differential diagnosis workflows, effectively reduced the overall missed diagnosis and misdiagnosis rate from 48. 8% to 4. 8% and shortened the diagnosis time for patients with misguided initial suspicion from an average of 681. 8 (74-11, 820) mins to 68. 5 (23-195) mins.
no code implementations • 23 Apr 2024 • Jingyang Lin, Yingda Xia, Jianpeng Zhang, Ke Yan, Le Lu, Jiebo Luo, Ling Zhang
In this paper, we extend the scope of Med-VLP to encompass 3D images, specifically targeting full-body scenarios, by using a multimodal dataset of CT images and reports.
no code implementations • CVPR 2024 • Weiwei Cao, Jianpeng Zhang, Yingda Xia, Tony C. W. Mok, Zi Li, Xianghua Ye, Le Lu, Jian Zheng, Yuxing Tang, Ling Zhang
In this paper, we explore the feasibility of leveraging language as a naturally high-quality supervision for chest CT imaging.
no code implementations • CVPR 2024 • Tony C. W. Mok, Zi Li, Yunhao Bai, Jianpeng Zhang, Wei Liu, Yan-Jie Zhou, Ke Yan, Dakai Jin, Yu Shi, Xiaoli Yin, Le Lu, Ling Zhang
Existing multi-modality image registration algorithms rely on statistical-based similarity measures or local structural image representations.
1 code implementation • CVPR 2024 • Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Qi Wu, Yong Xia
In this paper, we reconsider versatile self-supervised learning from the perspective of continual learning and propose MedCoSS, a continuous self-supervised learning approach for multi-modal medical data.
no code implementations • 20 Jul 2023 • Jianpeng Zhang, Xianghua Ye, Jianfeng Zhang, Yuxing Tang, Minfeng Xu, Jianfei Guo, Xin Chen, Zaiyi Liu, Jingren Zhou, Le Lu, Ling Zhang
In this paper, we propose a radiologist-inspired method to simulate the diagnostic process of radiologists, which is composed of context parsing and prototype recalling modules.
1 code implementation • 5 Jul 2023 • Nicholas Heller, Fabian Isensee, Dasha Trofimova, Resha Tejpaul, Zhongchen Zhao, Huai Chen, Lisheng Wang, Alex Golts, Daniel Khapun, Daniel Shats, Yoel Shoshan, Flora Gilboa-Solomon, Yasmeen George, Xi Yang, Jianpeng Zhang, Jing Zhang, Yong Xia, Mengran Wu, Zhiyang Liu, Ed Walczak, Sean McSweeney, Ranveer Vasdev, Chris Hornung, Rafat Solaiman, Jamee Schoephoerster, Bailey Abernathy, David Wu, Safa Abdulkadir, Ben Byun, Justice Spriggs, Griffin Struyk, Alexandra Austin, Ben Simpson, Michael Hagstrom, Sierra Virnig, John French, Nitin Venkatesh, Sarah Chan, Keenan Moore, Anna Jacobsen, Susan Austin, Mark Austin, Subodh Regmi, Nikolaos Papanikolopoulos, Christopher Weight
Overall KiTS21 facilitated a significant advancement in the state of the art in kidney tumor segmentation, and provides useful insights that are applicable to the field of semantic segmentation as a whole.
no code implementations • 29 May 2023 • Yutong Xie, Bing Yang, Qingbiao Guan, Jianpeng Zhang, Qi Wu, Yong Xia
This paper systematically reviews the basic principles of attention mechanisms and their applications in medical image segmentation.
1 code implementation • 7 Apr 2023 • Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia
Moreover, UniSeg also beats other pre-trained models on two downstream datasets, providing the community with a high-quality pre-trained model for 3D medical image segmentation.
no code implementations • ICCV 2023 • Jieneng Chen, Yingda Xia, Jiawen Yao, Ke Yan, Jianpeng Zhang, Le Lu, Fakai Wang, Bo Zhou, Mingyan Qiu, Qihang Yu, Mingze Yuan, Wei Fang, Yuxing Tang, Minfeng Xu, Jian Zhou, Yuqian Zhao, Qifeng Wang, Xianghua Ye, Xiaoli Yin, Yu Shi, Xin Chen, Jingren Zhou, Alan Yuille, Zaiyi Liu, Ling Zhang
Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice, while most medical AI systems are built to focus on single organs with a narrow list of a few diseases.
no code implementations • 16 Dec 2022 • Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Patrick Godau, Veronika Cheplygina, Michal Kozubek, Sharib Ali, Anubha Gupta, Jan Kybic, Alison Noble, Carlos Ortiz de Solórzano, Samiksha Pachade, Caroline Petitjean, Daniel Sage, Donglai Wei, Elizabeth Wilden, Deepak Alapatt, Vincent Andrearczyk, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Vivek Singh Bawa, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Jinwook Choi, Olivier Commowick, Marie Daum, Adrien Depeursinge, Reuben Dorent, Jan Egger, Hannah Eichhorn, Sandy Engelhardt, Melanie Ganz, Gabriel Girard, Lasse Hansen, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Hyunjeong Kim, Bennett Landman, Hongwei Bran Li, Jianning Li, Jun Ma, Anne Martel, Carlos Martín-Isla, Bjoern Menze, Chinedu Innocent Nwoye, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Carole Sudre, Kimberlin Van Wijnen, Armine Vardazaryan, Tom Vercauteren, Martin Wagner, Chuanbo Wang, Moi Hoon Yap, Zeyun Yu, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Rina Bao, Chanyeol Choi, Andrew Cohen, Oleh Dzyubachyk, Adrian Galdran, Tianyuan Gan, Tianqi Guo, Pradyumna Gupta, Mahmood Haithami, Edward Ho, Ikbeom Jang, Zhili Li, Zhengbo Luo, Filip Lux, Sokratis Makrogiannis, Dominik Müller, Young-tack Oh, Subeen Pang, Constantin Pape, Gorkem Polat, Charlotte Rosalie Reed, Kanghyun Ryu, Tim Scherr, Vajira Thambawita, Haoyu Wang, Xinliang Wang, Kele Xu, Hung Yeh, Doyeob Yeo, Yixuan Yuan, Yan Zeng, Xin Zhao, Julian Abbing, Jannes Adam, Nagesh Adluru, Niklas Agethen, Salman Ahmed, Yasmina Al Khalil, Mireia Alenyà, Esa Alhoniemi, Chengyang An, Talha Anwar, Tewodros Weldebirhan Arega, Netanell Avisdris, Dogu Baran Aydogan, Yingbin Bai, Maria Baldeon Calisto, Berke Doga Basaran, Marcel Beetz, Cheng Bian, Hao Bian, Kevin Blansit, Louise Bloch, Robert Bohnsack, Sara Bosticardo, Jack Breen, Mikael Brudfors, Raphael Brüngel, Mariano Cabezas, Alberto Cacciola, Zhiwei Chen, Yucong Chen, Daniel Tianming Chen, Minjeong Cho, Min-Kook Choi, Chuantao Xie Chuantao Xie, Dana Cobzas, Julien Cohen-Adad, Jorge Corral Acero, Sujit Kumar Das, Marcela de Oliveira, Hanqiu Deng, Guiming Dong, Lars Doorenbos, Cory Efird, Sergio Escalera, Di Fan, Mehdi Fatan Serj, Alexandre Fenneteau, Lucas Fidon, Patryk Filipiak, René Finzel, Nuno R. Freitas, Christoph M. Friedrich, Mitchell Fulton, Finn Gaida, Francesco Galati, Christoforos Galazis, Chang Hee Gan, Zheyao Gao, Shengbo Gao, Matej Gazda, Beerend Gerats, Neil Getty, Adam Gibicar, Ryan Gifford, Sajan Gohil, Maria Grammatikopoulou, Daniel Grzech, Orhun Güley, Timo Günnemann, Chunxu Guo, Sylvain Guy, Heonjin Ha, Luyi Han, Il Song Han, Ali Hatamizadeh, Tian He, Jimin Heo, Sebastian Hitziger, SeulGi Hong, Seungbum Hong, Rian Huang, Ziyan Huang, Markus Huellebrand, Stephan Huschauer, Mustaffa Hussain, Tomoo Inubushi, Ece Isik Polat, Mojtaba Jafaritadi, SeongHun Jeong, Bailiang Jian, Yuanhong Jiang, Zhifan Jiang, Yueming Jin, Smriti Joshi, Abdolrahim Kadkhodamohammadi, Reda Abdellah Kamraoui, Inha Kang, Junghwa Kang, Davood Karimi, April Khademi, Muhammad Irfan Khan, Suleiman A. Khan, Rishab Khantwal, Kwang-Ju Kim, Timothy Kline, Satoshi Kondo, Elina Kontio, Adrian Krenzer, Artem Kroviakov, Hugo Kuijf, Satyadwyoom Kumar, Francesco La Rosa, Abhi Lad, Doohee Lee, Minho Lee, Chiara Lena, Hao Li, Ling Li, Xingyu Li, Fuyuan Liao, Kuanlun Liao, Arlindo Limede Oliveira, Chaonan Lin, Shan Lin, Akis Linardos, Marius George Linguraru, Han Liu, Tao Liu, Di Liu, Yanling Liu, João Lourenço-Silva, Jingpei Lu, Jiangshan Lu, Imanol Luengo, Christina B. Lund, Huan Minh Luu, Yi Lv, Uzay Macar, Leon Maechler, Sina Mansour L., Kenji Marshall, Moona Mazher, Richard McKinley, Alfonso Medela, Felix Meissen, Mingyuan Meng, Dylan Miller, Seyed Hossein Mirjahanmardi, Arnab Mishra, Samir Mitha, Hassan Mohy-ud-Din, Tony Chi Wing Mok, Gowtham Krishnan Murugesan, Enamundram Naga Karthik, Sahil Nalawade, Jakub Nalepa, Mohamed Naser, Ramin Nateghi, Hammad Naveed, Quang-Minh Nguyen, Cuong Nguyen Quoc, Brennan Nichyporuk, Bruno Oliveira, David Owen, Jimut Bahan Pal, Junwen Pan, Wentao Pan, Winnie Pang, Bogyu Park, Vivek Pawar, Kamlesh Pawar, Michael Peven, Lena Philipp, Tomasz Pieciak, Szymon Plotka, Marcel Plutat, Fattaneh Pourakpour, Domen Preložnik, Kumaradevan Punithakumar, Abdul Qayyum, Sandro Queirós, Arman Rahmim, Salar Razavi, Jintao Ren, Mina Rezaei, Jonathan Adam Rico, ZunHyan Rieu, Markus Rink, Johannes Roth, Yusely Ruiz-Gonzalez, Numan Saeed, Anindo Saha, Mostafa Salem, Ricardo Sanchez-Matilla, Kurt Schilling, Wei Shao, Zhiqiang Shen, Ruize Shi, Pengcheng Shi, Daniel Sobotka, Théodore Soulier, Bella Specktor Fadida, Danail Stoyanov, Timothy Sum Hon Mun, Xiaowu Sun, Rong Tao, Franz Thaler, Antoine Théberge, Felix Thielke, Helena Torres, Kareem A. Wahid, Jiacheng Wang, Yifei Wang, Wei Wang, Xiong Wang, Jianhui Wen, Ning Wen, Marek Wodzinski, Ye Wu, Fangfang Xia, Tianqi Xiang, Chen Xiaofei, Lizhan Xu, Tingting Xue, Yuxuan Yang, Lin Yang, Kai Yao, Huifeng Yao, Amirsaeed Yazdani, Michael Yip, Hwanseung Yoo, Fereshteh Yousefirizi, Shunkai Yu, Lei Yu, Jonathan Zamora, Ramy Ashraf Zeineldin, Dewen Zeng, Jianpeng Zhang, Bokai Zhang, Jiapeng Zhang, Fan Zhang, Huahong Zhang, Zhongchen Zhao, Zixuan Zhao, Jiachen Zhao, Can Zhao, Qingshuo Zheng, Yuheng Zhi, Ziqi Zhou, Baosheng Zou, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein
Of these, 84% were based on standard architectures.
1 code implementation • 13 Nov 2022 • Yutong Xie, Jianpeng Zhang, Yong Xia, Chunhua Shen
To address this, we propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple partially labeled datasets.
no code implementations • 28 Aug 2022 • Yutong Xie, Jianpeng Zhang, Yong Xia, Anton Van Den Hengel, Qi Wu
Besides, we further extend the clustering-guided attention from single-scale to multi-scale, which is conducive to dense prediction tasks.
no code implementations • 22 Jul 2022 • Hu Wang, Jianpeng Zhang, Yuanhong Chen, Congbo Ma, Jodie Avery, Louise Hull, Gustavo Carneiro
Multi-modal learning focuses on training models by equally combining multiple input data modalities during the prediction process.
no code implementations • 10 Jan 2022 • Lei LI, Fuping Wu, Sihan Wang, Xinzhe Luo, Carlos Martin-Isla, Shuwei Zhai, Jianpeng Zhang, Yanfei Liu7, Zhen Zhang, Markus J. Ankenbrand, Haochuan Jiang, Xiaoran Zhang, Linhong Wang, Tewodros Weldebirhan Arega, Elif Altunok, Zhou Zhao, Feiyan Li, Jun Ma, Xiaoping Yang, Elodie Puybareau, Ilkay Oksuz, Stephanie Bricq, Weisheng Li, Kumaradevan Punithakumar, Sotirios A. Tsaftaris, Laura M. Schreiber, Mingjing Yang, Guocai Liu, Yong Xia, Guotai Wang, Sergio Escalera, Xiahai Zhuang
Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on myocardium is the key to this assessment.
1 code implementation • 17 Dec 2021 • Yutong Xie, Jianpeng Zhang, Yong Xia, Qi Wu
In this paper, we advocate bringing a wealth of 2D images like chest X-rays as compensation for the lack of 3D data, aiming to build a universal medical self-supervised representation learning framework, called UniMiSS.
1 code implementation • 13 Sep 2021 • Shishuai Hu, Zehui Liao, Jianpeng Zhang, Yong Xia
In the DAC module, a dynamic convolutional head is conditioned on the predicted domain code of the input to make our model adapt to the unseen target domain.
no code implementations • 19 Apr 2021 • Hu Wang, Congbo Ma, Jianpeng Zhang, Wei Emma Zhang, Gustavo Carneiro
Current deep image super-resolution (SR) approaches aim to restore high-resolution images from down-sampled images or by assuming degradation from simple Gaussian kernels and additive noises.
1 code implementation • 4 Mar 2021 • Yutong Xie, Jianpeng Zhang, Chunhua Shen, Yong Xia
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
1 code implementation • 28 Nov 2020 • Jianpeng Zhang, Yutong Xie, Yan Wang, Yong Xia
In this paper, we propose the 3D context residual network (ConResNet) for the accurate segmentation of 3D medical images.
no code implementations • 25 Nov 2020 • Yutong Xie, Jianpeng Zhang, Zehui Liao, Yong Xia, Chunhua Shen
In this paper, we propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
1 code implementation • CVPR 2021 • Jianpeng Zhang, Yutong Xie, Yong Xia, Chunhua Shen
To address this, we propose a dynamic on-demand network (DoDNet) that learns to segment multiple organs and tumors on partially labeled datasets.
no code implementations • 6 Aug 2020 • Yutong Xie, Jianpeng Zhang, Zhibin Liao, Chunhua Shen, Johan Verjans, Yong Xia
In this paper, we propose the pairwise relation-based semi-supervised (PRS^2) model for gland segmentation on histology images.
1 code implementation • 27 Mar 2020 • Jianpeng Zhang, Yutong Xie, Guansong Pang, Zhibin Liao, Johan Verjans, Wenxin Li, Zongji Sun, Jian He, Yi Li, Chunhua Shen, Yong Xia
In this paper, we formulate the task of differentiating viral pneumonia from non-viral pneumonia and healthy controls into an one-class classification-based anomaly detection problem, and thus propose the confidence-aware anomaly detection (CAAD) model, which consists of a shared feature extractor, an anomaly detection module, and a confidence prediction module.
no code implementations • 17 Aug 2019 • Yang Liu, Jianpeng Zhang, Chao GAO, Jinghua Qu, Lixin Ji
In this paper, we investigate the effect of different hyperparameters as well as different combinations of hyperparameters settings on the performance of the Attention-Gated Convolutional Neural Networks (AGCNNs), e. g., the kernel window size, the number of feature maps, the keep rate of the dropout layer, and the activation function.
no code implementations • 10 Aug 2019 • Yang Liu, Jianpeng Zhang, Chao GAO, Jinghua Qu, Lixin Ji
Activation functions play a key role in providing remarkable performance in deep neural networks, and the rectified linear unit (ReLU) is one of the most widely used activation functions.
1 code implementation • 8 Mar 2019 • Yutong Xie, Jianpeng Zhang, Yong Xia, Chunhua Shen
Our results suggest that it is possible to boost the performance of skin lesion segmentation and classification simultaneously via training a unified model to perform both tasks in a mutual bootstrapping way.
2 code implementations • 22 Aug 2018 • Yang Liu, Lixin Ji, Ruiyang Huang, Tuosiyu Ming, Chao GAO, Jianpeng Zhang
The classification of sentences is very challenging, since sentences contain the limited contextual information.
no code implementations • 23 Jul 2018 • Yutong Xie, Jianpeng Zhang, Yong Xia
A multi-level deep ensemble (MLDE) model that can be trained in an 'end to end' manner is proposed for skin lesion classification in dermoscopy images.
no code implementations • 25 May 2018 • Yulong Pei, Xin Du, Jianpeng Zhang, George Fletcher, Mykola Pechenizkiy
Almost all previous methods represent a node into a point in space and focus on local structural information, i. e., neighborhood information.
no code implementations • 28 Jun 2017 • Jianpeng Zhang, Yong Xia, Qi Wu, Yutong Xie
The Classification of medical images and illustrations in the literature aims to label a medical image according to the modality it was produced or label an illustration according to its production attributes.