1 code implementation • 24 Jan 2025 • JIA YU, Fei Yuan, Rui Min, Jing Yu, Pei Chu, Jiayang Li, Wei Li, Ruijie Zhang, Zhenxiang Li, Zhifei Ren, Dong Zheng, Wenjian Zhang, Yan Teng, Lingyu Meng, Zhenjiang Jin, Jiantao Qiu, Shasha Wang, Zhongying Tu, Dahua Lin, Yu Wang, Yu Qiao, Yanfeng Wang, Conghui He
This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models.
1 code implementation • 10 Oct 2024 • Tianyi Bai, Ling Yang, Zhen Hao Wong, Jiahui Peng, Xinlin Zhuang, Chi Zhang, Lijun Wu, Jiantao Qiu, Wentao Zhang, Binhang Yuan, Conghui He
Efficient data selection is crucial to accelerate the pretraining of large language models (LLMs).
no code implementations • 25 Sep 2024 • Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai, Jiantao Qiu, Lei Cao, Ju Fan, Ye Yuan, Guoren Wang, Conghui He
For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances.
3 code implementations • 26 Mar 2024 • Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, FuKai Shang, Yunfan Shao, Demin Song, Zifan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, JIA YU, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao, Dahua Lin
The evolution of Large Language Models (LLMs) like ChatGPT and GPT-4 has sparked discussions on the advent of Artificial General Intelligence (AGI).
Ranked #5 on
Long-Context Understanding
on Ada-LEval (BestAnswer)
no code implementations • 29 Feb 2024 • Jiantao Qiu, Haijun Lv, Zhenjiang Jin, Rui Wang, Wenchang Ning, JIA YU, Chaobin Zhang, Zhenxiang Li, Pei Chu, Yuan Qu, Jin Shi, Lindong Lu, Runyu Peng, Zhiyuan Zeng, Huanze Tang, Zhikai Lei, Jiawei Hong, Keyu Chen, Zhaoye Fei, Ruiliang Xu, Wei Li, Zhongying Tu, Lin Dahua, Yu Qiao, Hang Yan, Conghui He
To evaluate the quality and utility of the dataset, we trained 1B-parameter and 3B-parameter models using WanJuan-CC and another dataset, RefinedWeb.
1 code implementation • 21 Aug 2023 • Conghui He, Zhenjiang Jin, Chao Xu, Jiantao Qiu, Bin Wang, Wei Li, Hang Yan, Jiaqi Wang, Dahua Lin
The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs).
no code implementations • 14 Nov 2021 • Yuzi Yan, Xiaoxiang Li, Xinyou Qiu, Jiantao Qiu, Jian Wang, Yu Wang, Yuan Shen
In this paper, we propose a distributed formation and obstacle avoidance method based on multi-agent reinforcement learning (MARL).
Model Predictive Control
Multi-agent Reinforcement Learning
+3
1 code implementation • 20 Feb 2019 • Yu Xing, Shuang Liang, Lingzhi Sui, Xijie Jia, Jiantao Qiu, Xin Liu, Yushun Wang, Yu Wang, Yi Shan
On the Xilinx ZU2 @330 MHz and ZU9 @330 MHz, we achieve equivalently state-of-the-art performance on our benchmarks by na\"ive implementations without optimizations, and the throughput is further improved up to 1. 26x by leveraging heterogeneous optimizations in DNNVM.