no code implementations • 18 Jul 2024 • Emman Haider, Daniel Perez-Becker, Thomas Portet, Piyush Madan, Amit Garg, Atabak Ashfaq, David Majercak, Wen Wen, Dongwoo Kim, ZiYi Yang, Jianwen Zhang, Hiteshi Sharma, Blake Bullwinkel, Martin Pouliot, Amanda Minnich, Shiven Chawla, Solianna Herrera, Shahed Warreth, Maggie Engler, Gary Lopez, Nina Chikanov, Raja Sekhar Rao Dheekonda, Bolor-Erdene Jagdagdorj, Roman Lutz, Richard Lundeen, Tori Westerhoff, Pete Bryan, Christian Seifert, Ram Shankar Siva Kumar, Andrew Berkley, Alex Kessler
Recent innovations in language model training have demonstrated that it is possible to create highly performant models that are small enough to run on a smartphone.
no code implementations • 22 Apr 2024 • Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, ZiYi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, Xiren Zhou
We introduce phi-3-mini, a 3. 8 billion parameter language model trained on 3. 3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3. 5 (e. g., phi-3-mini achieves 69% on MMLU and 8. 38 on MT-bench), despite being small enough to be deployed on a phone.
Ranked #5 on
MMR total
on MRR-Benchmark
(using extra training data)
2 code implementations • 11 Aug 2020 • Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang, Zheng Chen
In this paper, we study how to leverage pre-trained language models in Text-to-SQL.
1 code implementation • NAACL 2019 • Yan Liang, Xin Liu, Jianwen Zhang, Yangqiu Song
In this paper, we study the problem of how to use out-of-relation knowledge bases to supervise the discovery of unseen relations, where out-of-relation means that relations to discover from the text corpus and those in knowledge bases are not overlapped.
1 code implementation • AAAI 2014 2014 • Zhen Wang, Jianwen Zhang, Jianlin Feng, Zheng Chen
Utilizing the one-to-many/many-to-one mapping property of a relation, we propose a simple trick to reduce the possibility of false negative labeling.