no code implementations • 9 Feb 2022 • Jiarui Jin, Xianyu Chen, Yuanbo Chen, Weinan Zhang, Renting Rui, Zaifan Jiang, Zhewen Su, Yong Yu
With the prevalence of live broadcast business nowadays, a new type of recommendation service, called live broadcast recommendation, is widely used in many mobile e-commerce Apps.
no code implementations • 7 Feb 2022 • Jiarui Jin, Xianyu Chen, Weinan Zhang, JunJie Huang, Ziming Feng, Yong Yu
More concretely, we first design a search-based module to retrieve a user's relevant historical behaviors, which are then mixed up with her recent records to be fed into a time-aware sequential network for capturing her time-sensitive demands.
no code implementations • ICLR 2022 • Yangkun Wang, Jiarui Jin, Weinan Zhang, Yongyi Yang, Jiuhai Chen, Quan Gan, Yong Yu, Zheng Zhang, Zengfeng Huang, David Wipf
In this regard, it has recently been proposed to use a randomly-selected portion of the training labels as GNN inputs, concatenated with the original node features for making predictions on the remaining labels.
no code implementations • ICLR 2022 • Jiarui Jin, Sijin Zhou, Weinan Zhang, Tong He, Yong Yu, Rasool Fakoor
Goal-oriented Reinforcement Learning (GoRL) is a promising approach for scaling up RL techniques on sparse reward environments requiring long horizon planning.
no code implementations • ICLR 2022 • Jiarui Jin, Yangkun Wang, Kounianhua Du, Weinan Zhang, Zheng Zhang, David Wipf, Yong Yu, Quan Gan
Prevailing methods for relation prediction in heterogeneous graphs aim at learning latent representations (i. e., embeddings) of observed nodes and relations, and thus are limited to the transductive setting where the relation types must be known during training.
1 code implementation • 24 Mar 2021 • Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, David Wipf
Over the past few years, graph neural networks (GNN) and label propagation-based methods have made significant progress in addressing node classification tasks on graphs.
Ranked #1 on
Node Property Prediction
on ogbn-proteins
no code implementations • 1 Jan 2021 • Jiarui Jin, Sijin Zhou, Weinan Zhang, Rasool Fakoor, David Wipf, Tong He, Yong Yu, Zheng Zhang, Alex Smola
In reinforcement learning, a map with states and transitions built based on historical trajectories is often helpful in exploration and exploitation.
no code implementations • 1 Jan 2021 • Jiarui Jin, Cong Chen, Ming Zhou, Weinan Zhang, Rasool Fakoor, David Wipf, Yong Yu, Jun Wang, Alex Smola
Goal-oriented reinforcement learning algorithms are often good at exploration, not exploitation, while episodic algorithms excel at exploitation, not exploration.
1 code implementation • 25 Nov 2020 • Jiarui Jin, Kounianhua Du, Weinan Zhang, Jiarui Qin, Yuchen Fang, Yong Yu, Zheng Zhang, Alexander J. Smola
Heterogeneous information network (HIN) has been widely used to characterize entities of various types and their complex relations.
1 code implementation • 1 Jul 2020 • Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Wei-Nan Zhang, Yong Yu, Zheng Zhang, Alexander J. Smola
To the best of our knowledge, this is the first work providing an efficient neighborhood-based interaction model in the HIN-based recommendations.
1 code implementation • 28 May 2020 • Jiarui Qin, Wei-Nan Zhang, Xin Wu, Jiarui Jin, Yuchen Fang, Yong Yu
These retrieved behaviors are then fed into a deep model to make the final prediction instead of simply using the most recent ones.
1 code implementation • 30 Apr 2020 • Jiarui Jin, Yuchen Fang, Wei-Nan Zhang, Kan Ren, Guorui Zhou, Jian Xu, Yong Yu, Jun Wang, Xiaoqiang Zhu, Kun Gai
Position bias is a critical problem in information retrieval when dealing with implicit yet biased user feedback data.
no code implementations • 7 Oct 2019 • Ming Zhou, Jiarui Jin, Wei-Nan Zhang, Zhiwei Qin, Yan Jiao, Chenxi Wang, Guobin Wu, Yong Yu, Jieping Ye
Improving the efficiency of dispatching orders to vehicles is a research hotspot in online ride-hailing systems.
no code implementations • 27 May 2019 • Jiarui Jin, Ming Zhou, Wei-Nan Zhang, Minne Li, Zilong Guo, Zhiwei Qin, Yan Jiao, Xiaocheng Tang, Chenxi Wang, Jun Wang, Guobin Wu, Jieping Ye
How to optimally dispatch orders to vehicles and how to trade off between immediate and future returns are fundamental questions for a typical ride-hailing platform.
Multiagent Systems