Search Results for author: Jiawei Zhang

Found 108 papers, 30 papers with code

Learning Event-Driven Video Deblurring and Interpolation

no code implementations ECCV 2020 Songnan Lin, Jiawei Zhang, Jinshan Pan, Zhe Jiang, Dongqing Zou, Yongtian Wang, Jing Chen, Jimmy Ren

Event-based sensors, which have a response if the change of pixel intensity exceeds a triggering threshold, can capture high-speed motion with microsecond accuracy.

Deblurring

OID: Outlier Identifying and Discarding in Blind Image Deblurring

no code implementations ECCV 2020 Liang Chen, Faming Fang, Jiawei Zhang, Jun Liu, Guixu Zhang

Even a small amount of outliers can dramatically degrade the quality of the estimated blur kernel, because the outliers are not conforming to the linear formation of the blurring process.

Blind Image Deblurring

Targeted Cross-Validation

no code implementations14 Sep 2021 Jiawei Zhang, Jie Ding, Yuhong Yang

A standard approach is to find the globally best modeling method from a set of candidate methods.

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision

1 code implementation18 Aug 2021 Zhilu Zhang, Haolin Wang, Ming Liu, Ruohao Wang, Jiawei Zhang, WangMeng Zuo

To diminish the effect of color inconsistency in image alignment, we introduce to use a global color mapping (GCM) module to generate an initial sRGB image given the input raw image, which can keep the spatial location of the pixels unchanged, and the target sRGB image is utilized to guide GCM for converting the color towards it.

Optical Flow Estimation

Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

1 code implementation14 Aug 2021 Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, Philip S. Yu

Therefore, we propose to unify sequential patterns and temporal collaborative signals to improve the quality of recommendation, which is rather challenging.

Blind Deblurring for Saturated Images

no code implementations CVPR 2021 Liang Chen, Jiawei Zhang, Songnan Lin, Faming Fang, Jimmy S. Ren

To address this problem, we introduce a new blur model to fit both saturated and unsaturated pixels, and all informative pixels can be considered during deblurring process.

Deblurring

Learning a Non-Blind Deblurring Network for Night Blurry Images

no code implementations CVPR 2021 Liang Chen, Jiawei Zhang, Jinshan Pan, Songnan Lin, Faming Fang, Jimmy S. Ren

Deblurring night blurry images is difficult, because the common-used blur model based on the linear convolution operation does not hold in this situation due to the influence of saturated pixels.

Deblurring Image Restoration

Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation

1 code implementation10 Jun 2021 Jiawei Zhang, Linyi Li, Huichen Li, Xiaolu Zhang, Shuang Yang, Bo Li

In this paper, we show that such efficiency highly depends on the scale at which the attack is applied, and attacking at the optimal scale significantly improves the efficiency.

Face Recognition

EchoCP: An Echocardiography Dataset in Contrast Transthoracic Echocardiography for Patent Foramen Ovale Diagnosis

no code implementations18 May 2021 Tianchen Wang, Zhihe Li, Meiping Huang, Jian Zhuang, Shanshan Bi, Jiawei Zhang, Yiyu Shi, Hongwen Fei, Xiaowei Xu

For PFO diagnosis, contrast transthoracic echocardiography (cTTE) is preferred as being a more robust method compared with others.

Drill the Cork of Information Bottleneck by Inputting the Most Important Data

no code implementations15 May 2021 Xinyu Peng, Jiawei Zhang, Fei-Yue Wang, Li Li

As a promising tool to better understand the learning dynamic of minibatch SGD, the information bottleneck (IB) theory claims that the optimization process consists of an initial fitting phase and the following compression phase.

Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs

no code implementations6 Apr 2021 Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, Philip S. Yu

To model the uncertainty, we devise a hyperbolic graph variational autoencoder built upon the proposed TGNN to generate stochastic node representations of hyperbolic normal distributions.

Pyramid U-Net for Retinal Vessel Segmentation

no code implementations6 Apr 2021 Jiawei Zhang, Yanchun Zhang, Xiaowei Xu

To further improve performance, two optimizations including pyramid inputs enhancement and deep pyramid supervision are applied to PSABs in the encoder and decoder, respectively.

Retinal Vessel Segmentation

Centrality Meets Centroid: A Graph-based Approach for Unsupervised Document Summarization

no code implementations29 Mar 2021 Haopeng Zhang, Jiawei Zhang

Unsupervised document summarization has re-acquired lots of attention in recent years thanks to its simplicity and data independence.

Document Summarization Extractive Document Summarization

Decentralized Non-Convex Learning with Linearly Coupled Constraints

no code implementations9 Mar 2021 Jiawei Zhang, Songyang Ge, Tsung-Hui Chang, Zhi-Quan Luo

Motivated by the need for decentralized learning, this paper aims at designing a distributed algorithm for solving nonconvex problems with general linear constraints over a multi-agent network.

Optimization and Control Systems and Control Systems and Control

Efficient Deep Image Denoising via Class Specific Convolution

no code implementations2 Mar 2021 Lu Xu, Jiawei Zhang, Xuanye Cheng, Feng Zhang, Xing Wei, Jimmy Ren

In this paper, we propose an efficient deep neural network for image denoising based on pixel-wise classification.

Image Denoising

Topology Learning Aided False Data Injection Attack without Prior Topology Information

no code implementations24 Feb 2021 Martin Higgins, Jiawei Zhang, Ning Zhang, Fei Teng

False Data Injection (FDI) attacks against powersystem state estimation are a growing concern for operators. Previously, most works on FDI attacks have been performedunder the assumption of the attacker having full knowledge ofthe underlying system without clear justification.

Measurement of the absolute branching fractions for purely leptonic $D_s^+$ decays

no code implementations23 Feb 2021 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, H. F. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, A. Q. Zhang, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Constraining our measurement to the Standard Model expectation of lepton universality ($R=9. 75$), we find the more precise results $\cal B(D_s^+\to \tau^+\nu_\tau) = (5. 22\pm0. 10\pm 0. 14)\times10^{-2}$ and $A_{CP}(\tau^\pm\nu_\tau) = (-0. 1\pm2. 1)\%$.

High Energy Physics - Experiment

Cross section measurement of $e^+e^- \to p\bar{p}η$ and $e^+e^- \to p\bar{p}ω$ at center-of-mass energies between 3.773 GeV and 4.6 GeV

no code implementations8 Feb 2021 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N. Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Based on $14. 7~\textrm{fb}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at 17 different center-of-mass energies between $3. 7730~\textrm{GeV}$ and $4. 5995~\textrm{GeV}$, Born cross sections of the two processes $e^+e^- \to p\bar{p}\eta$ and $e^+e^- \to p\bar{p}\omega$ are measured for the first time.

High Energy Physics - Experiment

ObjectAug: Object-level Data Augmentation for Semantic Image Segmentation

no code implementations30 Jan 2021 Jiawei Zhang, Yanchun Zhang, Xiaowei Xu

In addition, ObjectAug can support category-aware augmentation that gives various possibilities to objects in each category, and can be easily combined with existing image-level augmentation methods to further boost performance.

Data Augmentation Image Inpainting +1

Adversarial Active Learning based Heterogeneous Graph Neural Network for Fake News Detection

no code implementations27 Jan 2021 Yuxiang Ren, Bo wang, Jiawei Zhang, Yi Chang

AA-HGNN utilizes an active learning framework to enhance learning performance, especially when facing the paucity of labeled data.

Active Learning Fake News Detection +2

Systematic electrochemical etching of various metal tips for tunneling spectroscopy and scanning probe microscopy

no code implementations18 Jan 2021 Jiawei Zhang, Pinyuan Wang, Xuao Zhang, Haoran Ji, Jiawei Luo, He Wang, Jian Wang

To ensure the reproducibility of experimental results, the fabrication of tips should be standardized, and a controllable and convenient system should be set up.

Materials Science

Measurements of the center-of-mass energies of $e^{+}e^{-}$ collisions at BESIII

no code implementations29 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, N Hüsken, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

During the 2016-17 and 2018-19 running periods, the BESIII experiment collected 7. 5~fb$^{-1}$ of $e^+e^-$ collision data at center-of-mass energies ranging from 4. 13 to 4. 44 GeV.

High Energy Physics - Experiment

Online Stochastic Optimization with Wasserstein Based Non-stationarity

no code implementations13 Dec 2020 Jiashuo Jiang, Xiaocheng Li, Jiawei Zhang

We propose a unified Wasserstein-distance based measure to quantify the inaccuracy of the prior estimate in setting (i) and the non-stationarity of the system in setting (ii).

Stochastic Optimization

Search for the reaction $e^{+}e^{-} \rightarrow π^{+}π^{-} χ_{cJ}$ and a charmonium-like structure decaying to $χ_{cJ}π^{\pm}$ between 4.18 and 4.60 GeV

no code implementations4 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, N. Hüsken, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

We search for the process $e^{+}e^{-}\rightarrow \pi ^{+}\pi ^{-} \chi_{cJ}$ ($J=0, 1, 2$) and for a charged charmonium-like state in the $\pi ^{\pm} \chi_{cJ}$ subsystem.

High Energy Physics - Experiment

Distributed Stochastic Consensus Optimization with Momentum for Nonconvex Nonsmooth Problems

no code implementations10 Nov 2020 Zhiguo Wang, Jiawei Zhang, Tsung-Hui Chang, Jian Li, Zhi-Quan Luo

While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems.

Distributed Optimization

Deoscillated Graph Collaborative Filtering

1 code implementation4 Nov 2020 Zhiwei Liu, Lin Meng, Fei Jiang, Jiawei Zhang, Philip S. Yu

Stacking multiple cross-hop propagation layers and locality layers constitutes the DGCF model, which models high-order CF signals adaptively to the locality of nodes and layers.

Recommendation Systems

A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems

no code implementations NeurIPS 2020 Jiawei Zhang, Peijun Xiao, Ruoyu Sun, Zhi-Quan Luo

We prove that the stabilized GDA algorithm can achieve an $O(1/\epsilon^2)$ iteration complexity for minimizing the pointwise maximum of a finite collection of nonconvex functions.

Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning

2 code implementations22 Sep 2020 Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, Yangyong Zhu

Instead of learning on the complete input graph data, with a novel data augmentation strategy, \textsc{Subg-Con} learns node representations through a contrastive loss defined based on subgraphs sampled from the original graph instead.

Data Augmentation Graph Representation Learning +2

EfficientFCN: Holistically-guided Decoding for Semantic Segmentation

no code implementations ECCV 2020 Jianbo Liu, Junjun He, Jiawei Zhang, Jimmy S. Ren, Hongsheng Li

State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated convolutions in the backbone networks to extract high-resolution feature maps for achieving high-performance segmentation performance.

Semantic Segmentation

Model independent determination of the spin of the $Ω^{-}$ and its polarization alignment in $ψ(3686)\rightarrowΩ^{-}\barΩ^{+}$

no code implementations7 Jul 2020 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Anita, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. B. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. -B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, X. L. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

We present an analysis of the process $\psi(3686) \to \Omega^- \bar{\Omega}^+$ ($\Omega^-\to K^-\Lambda$, $\bar{\Omega}^+\to K^+\bar{\Lambda}$, $\Lambda\to p\pi^-$, $\bar{\Lambda}\to \bar{p}\pi^+$) based on a data set of $448\times 10^6$ $\psi(3686)$ decays collected with the BESIII detector at the BEPCII electron-positron collider.

High Energy Physics - Experiment

Cross-Scale Internal Graph Neural Network for Image Super-Resolution

1 code implementation NeurIPS 2020 Shangchen Zhou, Jiawei Zhang, WangMeng Zuo, Chen Change Loy

Specifically, we dynamically construct a cross-scale graph by searching k-nearest neighboring patches in the downsampled LR image for each query patch in the LR image.

Image Restoration Image Super-Resolution

G5: A Universal GRAPH-BERT for Graph-to-Graph Transfer and Apocalypse Learning

no code implementations11 Jun 2020 Jiawei Zhang

In this paper, we will further investigate the graph-to-graph transfer of a universal GRAPH-BERT for graph representation learning across different graph datasets, and our proposed model is also referred to as the G5 for simplicity.

Classification Consistency Graph Representation Learning

Learning a Reinforced Agent for Flexible Exposure Bracketing Selection

1 code implementation CVPR 2020 Zhouxia Wang, Jiawei Zhang, Mude Lin, Jiong Wang, Ping Luo, Jimmy Ren

Automatically selecting exposure bracketing (images exposed differently) is important to obtain a high dynamic range image by using multi-exposure fusion.

CG-BERT: Conditional Text Generation with BERT for Generalized Few-shot Intent Detection

no code implementations4 Apr 2020 Congying Xia, Chenwei Zhang, Hoang Nguyen, Jiawei Zhang, Philip Yu

In this paper, we formulate a more realistic and difficult problem setup for the intent detection task in natural language understanding, namely Generalized Few-Shot Intent Detection (GFSID).

Conditional Text Generation Intent Detection +3

Deep Blind Video Super-resolution

1 code implementation10 Mar 2020 Jinshan Pan, Songsheng Cheng, Jiawei Zhang, Jinhui Tang

Existing video super-resolution (SR) algorithms usually assume that the blur kernels in the degradation process are known and do not model the blur kernels in the restoration.

Image Deconvolution Image Restoration +2

Ripple Walk Training: A Subgraph-based training framework for Large and Deep Graph Neural Network

no code implementations17 Feb 2020 Jiyang Bai, Yuxiang Ren, Jiawei Zhang

To deal with these problems, in this paper, we propose a general subgraph-based training framework, namely Ripple Walk Training (RWT), for deep and large graph neural networks.

Graph Neural Distance Metric Learning with Graph-Bert

1 code implementation9 Feb 2020 Jiawei Zhang

Extensive experiments have been done on several benchmark graph datasets, and the results demonstrate that GB-DISTANCE can out-perform the existing baseline methods, especially the recent graph neural network model based graph metrics, with a significant gap in computing the graph distance.

Graph Classification Graph Clustering +3

Segmented Graph-Bert for Graph Instance Modeling

1 code implementation9 Feb 2020 Jiawei Zhang

In this paper, we will examine the effectiveness of GRAPH-BERT on graph instance representation learning, which was designed for node representation learning tasks originally.

Graph Classification Representation Learning

Fake News Detection on News-Oriented Heterogeneous Information Networks through Hierarchical Graph Attention

no code implementations5 Feb 2020 Yuxiang Ren, Jiawei Zhang

In addition, the experiment proved the expandability and generalizability of our for graph representation learning and other node classification related applications in heterogeneous graphs.

Fake News Detection Graph Attention +2

EnsemFDet: An Ensemble Approach to Fraud Detection based on Bipartite Graph

no code implementations23 Dec 2019 Yuxiang Ren, Hao Zhu, Jiawei Zhang, Peng Dai, Liefeng Bo

Existing fraud detection methods try to identify unexpected dense subgraphs and treat related nodes as suspicious.

Fraud Detection

Heterogeneous Deep Graph Infomax

1 code implementation19 Nov 2019 Yuxiang Ren, Bo Liu, Chao Huang, Peng Dai, Liefeng Bo, Jiawei Zhang

The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering.

Classification General Classification +3

Is a Classification Procedure Good Enough? A Goodness-of-Fit Assessment Tool for Classification Learning

no code implementations8 Nov 2019 Jiawei Zhang, Jie Ding, Yuhong Yang

For testing parametric classification models, the BAGofT has a broader scope than the existing methods since it is not restricted to specific parametric models (e. g., logistic regression).

Classification General Classification

JSCN: Joint Spectral Convolutional Network for Cross Domain Recommendation

1 code implementation18 Oct 2019 Zhiwei Liu, Lei Zheng, Jiawei Zhang, Jiayu Han, Philip S. Yu

JSCN will simultaneously operate multi-layer spectral convolutions on different graphs, and jointly learn a domain-invariant user representation with a domain adaptive user mapping module.

Recommendation Systems

GResNet: Graph Residual Network for Reviving Deep GNNs from Suspended Animation

2 code implementations12 Sep 2019 Jiawei Zhang, Lin Meng

Analysis about the causes of the suspended animation problem with existing GNNs will be provided in this paper, whereas several other peripheral factors that will impact the problem will be reported as well.

Node Classification

Graph Neural Networks for Small Graph and Giant Network Representation Learning: An Overview

no code implementations1 Aug 2019 Jiawei Zhang

Several different types of graph neural network models have been introduced for learning the representations from such different types of graphs already.

Graph Classification Representation Learning

BGADAM: Boosting based Genetic-Evolutionary ADAM for Neural Network Optimization

no code implementations26 Jul 2019 Jiyang Bai, Yuxiang Ren, Jiawei Zhang

To resolve this problem and further maximize the advantages of genetic algorithm with base learners, we propose to implement the boosting strategy for input model training, which can subsequently improve the effectiveness of genetic algorithm.

Graph Neural Lasso for Dynamic Network Regression

1 code implementation25 Jul 2019 Yixin Chen, Lin Meng, Jiawei Zhang

Experimental results provided on two networked sequence datasets, i. e., Nasdaq-100 and METR-LA, show that GNL can address the network regression problem very well and is also very competitive among the existing approaches.

DEAM: Adaptive Momentum with Discriminative Weight for Stochastic Optimization

no code implementations25 Jul 2019 Jiyang Bai, Yuxiang Ren, Jiawei Zhang

Optimization algorithms with momentum, e. g., (ADAM), have been widely used for building deep learning models due to the faster convergence rates compared with stochastic gradient descent (SGD).

Stochastic Optimization

IsoNN: Isomorphic Neural Network for Graph Representation Learning and Classification

1 code implementation22 Jul 2019 Lin Meng, Jiawei Zhang

However, unlike such fields, it is hard to apply traditional deep learning models on the graph data due to the 'node-orderless' property.

Classification General Classification +3

Secrets of the Brain: An Introduction to the Brain Anatomical Structure and Biological Function

no code implementations31 May 2019 Jiawei Zhang

In this paper, we will focus introducing the brain anatomical structure and biological function, as well as its surrounding sensory systems.

Cognitive Functions of the Brain: Perception, Attention and Memory

no code implementations30 May 2019 Jiawei Zhang

This is a follow-up tutorial article of [17] and [16], in this paper, we will introduce several important cognitive functions of the brain.

Decision Making

Missing Movie Synergistic Completion across Multiple Isomeric Online Movie Knowledge Libraries

no code implementations15 May 2019 Bowen Dong, Jiawei Zhang, Chenwei Zhang, Yang Yang, Philip S. Yu

Online knowledge libraries refer to the online data warehouses that systematically organize and categorize the knowledge-based information about different kinds of concepts and entities.

Visualizing and Understanding the Semantics of Embedding Spaces via Algebraic Formulae

no code implementations ICLR 2019 Piero Molino, Yang Wang, Jiawei Zhang

Embeddings are a fundamental component of many modern machine learning and natural language processing models.

SEGEN: SAMPLE-ENSEMBLE GENETIC EVOLUTIONARY NETWORK MODEL

no code implementations ICLR 2019 Jiawei Zhang, Limeng Cui, Fisher B. Gouza

Deep learning, a rebranding of deep neural network research works, has achieved a remarkable success in recent years.

Ensemble Learning Representation Learning

Spatio-Temporal Filter Adaptive Network for Video Deblurring

1 code implementation ICCV 2019 Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie, WangMeng Zuo, Jimmy Ren

To overcome the limitation of separate optical flow estimation, we propose a Spatio-Temporal Filter Adaptive Network (STFAN) for the alignment and deblurring in a unified framework.

Ranked #3 on Deblurring on DVD (using extra training data)

Deblurring Optical Flow Estimation

Derivative-Free Global Optimization Algorithms: Bayesian Method and Lipschitzian Approaches

no code implementations19 Apr 2019 Jiawei Zhang

One part of these algorithms will be introduced in this paper (including the Bayesian method and Lipschitzian approaches, e. g., Shubert-Piyavskii algorithm, Direct, LIPO and MCS), and the remaining algorithms (including the population based optimization algorithms, e. g., GA, SCE, DE, PSO, ES and CMA-ES, and random search algorithms, e. g., hill climbing and simulated annealing) will be introduced in the follow-up paper [18] in detail.

Global Optimization

Derivative-Free Global Optimization Algorithms: Population based Methods and Random Search Approaches

no code implementations19 Apr 2019 Jiawei Zhang

This is a follow-up paper of [18], and we will introduce the population based optimization algorithms, e. g., GA, SCE, DE, PSO, ES and CMA-ES, and random search algorithms, e. g., hill climbing and simulated annealing, in this paper.

Global Optimization

DAVANet: Stereo Deblurring with View Aggregation

1 code implementation CVPR 2019 Shangchen Zhou, Jiawei Zhang, WangMeng Zuo, Haozhe Xie, Jinshan Pan, Jimmy Ren

Nowadays stereo cameras are more commonly adopted in emerging devices such as dual-lens smartphones and unmanned aerial vehicles.

Deblurring

Gradient Descent based Optimization Algorithms for Deep Learning Models Training

no code implementations11 Mar 2019 Jiawei Zhang

In back propagation, the model variables will be updated iteratively until convergence with gradient descent based optimization algorithms.

MDU-Net: Multi-scale Densely Connected U-Net for biomedical image segmentation

no code implementations2 Dec 2018 Jiawei Zhang, Yuzhen Jin, Jilan Xu, Xiaowei Xu, Yanchun Zhang

The three multi-scale dense connections improve U-net performance by up to 1. 8% on test A and 3. 5% on test B in the MICCAI Gland dataset.

Quantization Semantic Segmentation

Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation

no code implementations NeurIPS 2018 Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, WangMeng Zuo, Wei Liu, Ming-Hsuan Yang

In this paper, we present a deep convolutional neural network to capture the inherent properties of image degradation, which can handle different kernels and saturated pixels in a unified framework.

Deblurring

Joint Face Hallucination and Deblurring via Structure Generation and Detail Enhancement

no code implementations22 Nov 2018 Yibing Song, Jiawei Zhang, Lijun Gong, Shengfeng He, Linchao Bao, Jinshan Pan, Qingxiong Yang, Ming-Hsuan Yang

We first propose a facial component guided deep Convolutional Neural Network (CNN) to restore a coarse face image, which is denoted as the base image where the facial component is automatically generated from the input face image.

Deblurring Face Hallucination +1

Data-driven Blockbuster Planning on Online Movie Knowledge Library

no code implementations24 Oct 2018 Ye Liu, Jiawei Zhang, Chenwei Zhang, Philip S. Yu

After a thorough investigation of an online movie knowledge library, a novel movie planning framework "Blockbuster Planning with Maximized Movie Configuration Acquaintance" (BigMovie) is introduced in this paper.

A Self-Organizing Tensor Architecture for Multi-View Clustering

no code implementations18 Oct 2018 Lifang He, Chun-Ta Lu, Yong Chen, Jiawei Zhang, Linlin Shen, Philip S. Yu, Fei Wang

In many real-world applications, data are often unlabeled and comprised of different representations/views which often provide information complementary to each other.

Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks

1 code implementation3 Sep 2018 Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang, Chao Dong, Liang Lin

We consider the single image super-resolution problem in a more general case that the low-/high-resolution pairs and the down-sampling process are unavailable.

Image Super-Resolution Image-to-Image Translation

Grassmann Pooling as Compact Homogeneous Bilinear Pooling for Fine-Grained Visual Classification

no code implementations ECCV 2018 Xing Wei, Yue Zhang, Yihong Gong, Jiawei Zhang, Nanning Zheng

The reason is that the bilinear feature matrix is sensitive to the magnitudes and correlations of local CNN feature elements which can be measured by its singular values.

Fine-Grained Image Classification Fine-Grained Visual Recognition +1

Spectral Collaborative Filtering

1 code implementation30 Aug 2018 Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, Philip S. Yu

Benefiting from the rich information of connectivity existing in the \textit{spectral domain}, SpectralCF is capable of discovering deep connections between users and items and therefore, alleviates the \textit{cold-start} problem for CF.

Recommendation Systems

Physics-Based Generative Adversarial Models for Image Restoration and Beyond

no code implementations2 Aug 2018 Jinshan Pan, Jiangxin Dong, Yang Liu, Jiawei Zhang, Jimmy Ren, Jinhui Tang, Yu-Wing Tai, Ming-Hsuan Yang

We present an algorithm to directly solve numerous image restoration problems (e. g., image deblurring, image dehazing, image deraining, etc.).

Deblurring Image Dehazing +2

Manifold: A Model-Agnostic Framework for Interpretation and Diagnosis of Machine Learning Models

no code implementations1 Aug 2018 Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, David S. Ebert

We present Manifold, a framework that utilizes visual analysis techniques to support interpretation, debugging, and comparison of machine learning models in a more transparent and interactive manner.

TI-CNN: Convolutional Neural Networks for Fake News Detection

2 code implementations3 Jun 2018 Yang Yang, Lei Zheng, Jiawei Zhang, Qingcai Cui, Zhoujun Li, Philip S. Yu

By projecting the explicit and latent features into a unified feature space, TI-CNN is trained with both the text and image information simultaneously.

Fact Checking Fake News Detection

r-Instance Learning for Missing People Tweets Identification

no code implementations28 May 2018 Yang Yang, Haoyan Liu, Xia Hu, Jiawei Zhang, Xiao-Ming Zhang, Zhoujun Li, Philip S. Yu

The number of missing people (i. e., people who get lost) greatly increases in recent years.

FAKEDETECTOR: Effective Fake News Detection with Deep Diffusive Neural Network

2 code implementations22 May 2018 Jiawei Zhang, Bowen Dong, Philip S. Yu

This paper aims at investigating the principles, methodologies and algorithms for detecting fake news articles, creators and subjects from online social networks and evaluating the corresponding performance.

Fake News Detection

GADAM: Genetic-Evolutionary ADAM for Deep Neural Network Optimization

no code implementations19 May 2018 Jiawei Zhang, Fisher B. Gouza

Deep neural network learning can be formulated as a non-convex optimization problem.

GEN Model: An Alternative Approach to Deep Neural Network Models

no code implementations19 May 2018 Jiawei Zhang, Limeng Cui, Fisher B. Gouza

In this paper, we introduce an alternative approach, namely GEN (Genetic Evolution Network) Model, to the deep learning models.

Representation Learning