Search Results for author: Jiawei Zhang

Found 206 papers, 68 papers with code

Learning Event-Driven Video Deblurring and Interpolation

no code implementations ECCV 2020 Songnan Lin, Jiawei Zhang, Jinshan Pan, Zhe Jiang, Dongqing Zou, Yongtian Wang, Jing Chen, Jimmy Ren

Event-based sensors, which have a response if the change of pixel intensity exceeds a triggering threshold, can capture high-speed motion with microsecond accuracy.

Deblurring

OID: Outlier Identifying and Discarding in Blind Image Deblurring

no code implementations ECCV 2020 Liang Chen, Faming Fang, Jiawei Zhang, Jun Liu, Guixu Zhang

Even a small amount of outliers can dramatically degrade the quality of the estimated blur kernel, because the outliers are not conforming to the linear formation of the blurring process.

Blind Image Deblurring Image Deblurring

Continual-learning-based framework for structural damage recognition

no code implementations28 Aug 2024 Jiangpeng Shu, Jiawei Zhang, Reachsak Ly, Fangzheng Lin, Yuanfeng Duan

In addition, conventional CNN experiences catastrophic forgetting and training inefficiency as the number of tasks increases during continual learning, leading to large accuracy decrease of previous learned tasks.

Continual Learning

CommunityKG-RAG: Leveraging Community Structures in Knowledge Graphs for Advanced Retrieval-Augmented Generation in Fact-Checking

1 code implementation16 Aug 2024 Rong-Ching Chang, Jiawei Zhang

Despite advancements in Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, their effectiveness is often hindered by a lack of integration with entity relationships and community structures, limiting their ability to provide contextually rich and accurate information retrieval for fact-checking.

Fact Checking Information Retrieval +3

DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning

no code implementations26 Jul 2024 Xi Chen, Yun Xiong, Siwei Zhang, Jiawei Zhang, Yao Zhang, Shiyang Zhou, Xixi Wu, Mingyang Zhang, Tengfei Liu, Weiqiang Wang

Discrete-Time Dynamic Graphs (DTDGs), which are prevalent in real-world implementations and notable for their ease of data acquisition, have garnered considerable attention from both academic researchers and industry practitioners.

Graph Representation Learning

RPN: Reconciled Polynomial Network Towards Unifying PGMs, Kernel SVMs, MLP and KAN

1 code implementation5 Jul 2024 Jiawei Zhang

Technically, RPN proposes to disentangle the underlying function to be inferred into the inner product of a data expansion function and a parameter reconciliation function.

Intermediate Distillation: Data-Efficient Distillation from Black-Box LLMs for Information Retrieval

no code implementations18 Jun 2024 Zizhong Li, Haopeng Zhang, Jiawei Zhang

Moreover, our distilled retriever model significantly boosts performance in question-answering tasks within the RAG framework, demonstrating the potential of LLMs to economically and effectively train smaller models.

Information Retrieval Knowledge Distillation +3

A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models

no code implementations17 Jun 2024 Haopeng Zhang, Philip S. Yu, Jiawei Zhang

Text summarization research has undergone several significant transformations with the advent of deep neural networks, pre-trained language models (PLMs), and recent large language models (LLMs).

Benchmarking Text Summarization

Towards Adaptive Neighborhood for Advancing Temporal Interaction Graph Modeling

no code implementations14 Jun 2024 Siwei Zhang, Xi Chen, Yun Xiong, Xixi Wu, Yao Zhang, Yongrui Fu, Yinglong Zhao, Jiawei Zhang

These works can generate temporal node representations by encoding the surrounding neighborhoods for the target node.

GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning

no code implementations13 Jun 2024 Zhen Xiang, Linzhi Zheng, YanJie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong, Chulin Xie, Carl Yang, Dawn Song, Bo Li

We also show that GuardAgent is able to define novel functions in adaption to emergent LLM agents and guard requests, which underscores its strong generalization capabilities.

Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems

1 code implementation11 Jun 2024 Jiawei Zhang, Jiaxin Zhuang, Cheng Jin, Gen Li, Yuantao Gu

The proposed algorithm, termed ProjDiff, effectively harnesses the prior information and the denoising capability of a pre-trained diffusion model within the optimization framework.

Denoising Image Restoration

ChatGPT as the Marketplace of Ideas: Should Truth-Seeking Be the Goal of AI Content Governance?

no code implementations28 May 2024 Jiawei Zhang

This research also argues that so-called AI content risks are not created by AI companies but are inherent in the entire information ecosystem.

Chatbot

ChatScene: Knowledge-Enabled Safety-Critical Scenario Generation for Autonomous Vehicles

1 code implementation CVPR 2024 Jiawei Zhang, Chejian Xu, Bo Li

We present ChatScene, a Large Language Model (LLM)-based agent that leverages the capabilities of LLMs to generate safety-critical scenarios for autonomous vehicles.

Autonomous Driving Language Modelling +1

A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback

no code implementations20 May 2024 Kihyun Kim, Jiawei Zhang, Asuman Ozdaglar, Pablo A. Parrilo

Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning, which involve inferring and shaping the underlying reward function of sequential decision-making problems based on observed human demonstrations and feedback.

Decision Making reinforcement-learning

CoR-GS: Sparse-View 3D Gaussian Splatting via Co-Regularization

no code implementations20 May 2024 Jiawei Zhang, Jiahe Li, Xiaohan Yu, Lei Huang, Lin Gu, Jin Zheng, Xiao Bai

Based on the study, we propose CoR-GS, which identifies and suppresses inaccurate reconstruction based on the two disagreements: (1) Co-pruning considers Gaussians that exhibit high point disagreement in inaccurate positions and prunes them.

Novel View Synthesis

Additive-Effect Assisted Learning

no code implementations13 May 2024 Jiawei Zhang, Yuhong Yang, Jie Ding

It is quite popular nowadays for researchers and data analysts holding different datasets to seek assistance from each other to enhance their modeling performance.

Uniformly Stable Algorithms for Adversarial Training and Beyond

1 code implementation3 May 2024 Jiancong Xiao, Jiawei Zhang, Zhi-Quan Luo, Asuman Ozdaglar

To this aim, we introduce Moreau envelope-$\mathcal{A}$, a variant of the Moreau Envelope-type algorithm.

TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting

no code implementations23 Apr 2024 Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, Lin Gu

Leveraging the point-based Gaussian Splatting, facial motions can be represented in our method by applying smooth and continuous deformations to persistent Gaussian primitives, without requiring to learn the difficult appearance change like previous methods.

Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs

1 code implementation10 Apr 2024 Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng Tang, Suhang Wang, Yu Meng, Jiawei Han

Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively.

KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking

1 code implementation3 Apr 2024 Jiawei Zhang, Chejian Xu, Yu Gai, Freddy Lecue, Dawn Song, Bo Li

This paper introduces KnowHalu, a novel approach for detecting hallucinations in text generated by large language models (LLMs), utilizing step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism.

Fact Checking Hallucination +1

GPTA: Generative Prompt Tuning Assistant for Synergistic Downstream Neural Network Enhancement with LLMs

no code implementations29 Mar 2024 Xiao Liu, Jiawei Zhang

This study introduces GPTA, a Large Language Model assistance training framework, that enhances the training of downstream task models via prefix prompt.

Language Modelling Large Language Model

VersaT2I: Improving Text-to-Image Models with Versatile Reward

no code implementations27 Mar 2024 Jianshu Guo, Wenhao Chai, Jie Deng, Hsiang-Wei Huang, Tian Ye, Yichen Xu, Jiawei Zhang, Jenq-Neng Hwang, Gaoang Wang

Recent text-to-image (T2I) models have benefited from large-scale and high-quality data, demonstrating impressive performance.

EffiPerception: an Efficient Framework for Various Perception Tasks

no code implementations18 Mar 2024 Xinhao Xiang, Simon Dräger, Jiawei Zhang

The accuracy-speed-memory trade-off is always the priority to consider for several computer vision perception tasks.

3D Object Detection Data Augmentation +5

Regulating Chatbot Output via Inter-Informational Competition

no code implementations17 Mar 2024 Jiawei Zhang

In fact, a trove of empirical evidence has demonstrated that market competition among information outlets can effectively mitigate most risks and that overreliance on regulation is not only unnecessary but detrimental, as well.

Chatbot

Robust Synthetic-to-Real Transfer for Stereo Matching

1 code implementation CVPR 2024 Jiawei Zhang, Jiahe Li, Lei Huang, Xiaohan Yu, Lin Gu, Jin Zheng, Xiao Bai

With advancements in domain generalized stereo matching networks, models pre-trained on synthetic data demonstrate strong robustness to unseen domains.

Domain Generalization Pseudo Label +1

DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization

1 code implementation CVPR 2024 Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, Lin Gu

Our motivation stems from the highly efficient representation and surprising quality of the recent 3D Gaussian Splatting, despite it will encounter a geometry degradation when input views decrease.

Novel View Synthesis

MuseGraph: Graph-oriented Instruction Tuning of Large Language Models for Generic Graph Mining

no code implementations2 Mar 2024 Yanchao Tan, Hang Lv, Xinyi Huang, Jiawei Zhang, Shiping Wang, Carl Yang

Traditional Graph Neural Networks (GNNs), which are commonly used for modeling attributed graphs, need to be re-trained every time when applied to different graph tasks and datasets.

Graph Mining

Unveiling the Magic: Investigating Attention Distillation in Retrieval-augmented Generation

no code implementations19 Feb 2024 Zizhong Li, Haopeng Zhang, Jiawei Zhang

Retrieval-augmented generation framework can address the limitations of large language models by enabling real-time knowledge updates for more accurate answers.

Retrieval

Advanced Drug Interaction Event Prediction

no code implementations18 Feb 2024 Yingying Wang, Yun Xiong, Xixi Wu, Xiangguo Sun, Jiawei Zhang

Predicting drug-drug interaction adverse events, so-called DDI events, is increasingly valuable as it facilitates the study of mechanisms underlying drug use or adverse reactions.

Prompt Learning on Temporal Interaction Graphs

no code implementations9 Feb 2024 Xi Chen, Siwei Zhang, Yun Xiong, Xixi Wu, Jiawei Zhang, Xiangguo Sun, Yao Zhang, Feng Zhao, Yulin kang

In detail, we propose a temporal prompt generator to offer temporally-aware prompts for different tasks.

Representation Learning

Benchmarking Large Multimodal Models against Common Corruptions

1 code implementation22 Jan 2024 Jiawei Zhang, Tianyu Pang, Chao Du, Yi Ren, Bo Li, Min Lin

This technical report aims to fill a deficiency in the assessment of large multimodal models (LMMs) by specifically examining the self-consistency of their outputs when subjected to common corruptions.

Benchmarking

Bias-Compensated State of Charge and State of Health Joint Estimation for Lithium Iron Phosphate Batteries

no code implementations16 Jan 2024 Baozhao Yi, Xinhao Du, Jiawei Zhang, Xiaogang Wu, Qiuhao Hu, Weiran Jiang, Xiaosong Hu, Ziyou Song

Besides, the voltage measurement biases estimated in the low-slope SOC regions are compensated in the following joint estimation of SOC and SOH to enhance the state estimation accuracy further.

Cyclic Neural Network

no code implementations11 Jan 2024 Liangwei Yang, Hengrui Zhang, Zihe Song, Jiawei Zhang, Weizhi Zhang, Jing Ma, Philip S. Yu

This paper answers a fundamental question in artificial neural network (ANN) design: We do not need to build ANNs layer-by-layer sequentially to guarantee the Directed Acyclic Graph (DAG) property.

Generalized Lagrangian Neural Networks

no code implementations8 Jan 2024 Shanshan Xiao, Jiawei Zhang, Yifa Tang

Then in this article, we introduce a groundbreaking extension (Genralized Lagrangian Neural Networks) to Lagrangian Neural Networks (LNNs), innovatively tailoring them for non-conservative systems.

EPA: Neural Collapse Inspired Robust Out-of-Distribution Detector

no code implementations3 Jan 2024 Jiawei Zhang, Yufan Chen, Cheng Jin, Lei Zhu, Yuantao Gu

Out-of-distribution (OOD) detection plays a crucial role in ensuring the security of neural networks.

Out of Distribution (OOD) Detection

Contrastive Sequential Interaction Network Learning on Co-Evolving Riemannian Spaces

no code implementations2 Jan 2024 Li Sun, Junda Ye, Jiawei Zhang, Yong Yang, Mingsheng Liu, Feiyang Wang, Philip S. Yu

To address the aforementioned issues, we propose a novel Contrastive model for Sequential Interaction Network learning on Co-Evolving RiEmannian spaces, CSINCERE.

Contrastive Learning Recommendation Systems

A Revisit of Fake News Dataset with Augmented Fact-checking by ChatGPT

no code implementations19 Dec 2023 Zizhong Li, Haopeng Zhang, Jiawei Zhang

The proliferation of fake news has emerged as a critical issue in recent years, requiring significant efforts to detect it.

Fact Checking Fake News Detection

Diffusion-based Blind Text Image Super-Resolution

1 code implementation CVPR 2024 Yuzhe Zhang, Jiawei Zhang, Hao Li, Zhouxia Wang, Luwei Hou, Dongqing Zou, Liheng Bian

Since text prior is important to guarantee the correctness of the restored text structure according to existing arts, we also propose a Text Diffusion Model (TDM) for text recognition which can guide IDM to generate text images with correct structures.

Image Generation Image Super-Resolution

Beyond Text: Unveiling Multimodal Proficiency of Large Language Models with MultiAPI Benchmark

1 code implementation21 Nov 2023 Xiao Liu, Jianfeng Lin, Jiawei Zhang

The proliferation of Large Language Models like ChatGPT has significantly advanced language understanding and generation, impacting a broad spectrum of applications.

Decision Making

FusionViT: Hierarchical 3D Object Detection via LiDAR-Camera Vision Transformer Fusion

no code implementations7 Nov 2023 Xinhao Xiang, Jiawei Zhang

Different from the existing 3D object detection approaches, FusionViT is a pure-ViT based framework, which adopts a hierarchical architecture by extending the transformer model to embed both images and point clouds for effective representation learning.

3D Object Detection Object +3

3DifFusionDet: Diffusion Model for 3D Object Detection with Robust LiDAR-Camera Fusion

no code implementations7 Nov 2023 Xinhao Xiang, Simon Dräger, Jiawei Zhang

We propose the 3DifFusionDet framework in this paper, which structures 3D object detection as a denoising diffusion process from noisy 3D boxes to target boxes.

3D Object Detection Denoising +2

Stochastic Smoothed Gradient Descent Ascent for Federated Minimax Optimization

no code implementations2 Nov 2023 Wei Shen, Minhui Huang, Jiawei Zhang, Cong Shen

In recent years, federated minimax optimization has attracted growing interest due to its extensive applications in various machine learning tasks.

Federated Learning

Driving behavior-guided battery health monitoring for electric vehicles using machine learning

no code implementations25 Sep 2023 Nanhua Jiang, Jiawei Zhang, Weiran Jiang, Yao Ren, Jing Lin, Edwin Khoo, Ziyou Song

To address these issues, we proposed a feature-based machine learning pipeline for reliable battery health monitoring, enabled by evaluating the acquisition probability of features under real-world driving conditions.

A Health Monitoring System Based on Flexible Triboelectric Sensors for Intelligence Medical Internet of Things and its Applications in Virtual Reality

no code implementations13 Sep 2023 Junqi Mao, Puen Zhou, Xiaoyao Wang, Hongbo Yao, Liuyang Liang, Yiqiao Zhao, Jiawei Zhang, Dayan Ban, Haiwu Zheng

The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications, enabling the realization of precision medicine, intelligent healthcare, and telemedicine in the era of digitalization and intelligence.

Unsupervised Multi-document Summarization with Holistic Inference

no code implementations8 Sep 2023 Haopeng Zhang, Sangwoo Cho, Kaiqiang Song, Xiaoyang Wang, Hongwei Wang, Jiawei Zhang, Dong Yu

SRI balances the importance and diversity of a subset of sentences from the source documents and can be calculated in unsupervised and adaptive manners.

Diversity Document Summarization +2

iLoRE: Dynamic Graph Representation with Instant Long-term Modeling and Re-occurrence Preservation

no code implementations5 Sep 2023 Siwei Zhang, Yun Xiong, Yao Zhang, Xixi Wu, Yiheng Sun, Jiawei Zhang

To overcome the indiscriminate updating issue, we introduce the Adaptive Short-term Updater module that will automatically discard the useless or noisy edges, ensuring iLoRE's effectiveness and instant ability.

Fraud Detection Representation Learning

DiffSmooth: Certifiably Robust Learning via Diffusion Models and Local Smoothing

1 code implementation28 Aug 2023 Jiawei Zhang, Zhongzhu Chen, huan zhang, Chaowei Xiao, Bo Li

Diffusion models have been leveraged to perform adversarial purification and thus provide both empirical and certified robustness for a standard model.

Adversarial Purification Denoising

SPEED: Streaming Partition and Parallel Acceleration for Temporal Interaction Graph Embedding

1 code implementation27 Aug 2023 Xi Chen, Yongxiang Liao, Yun Xiong, Yao Zhang, Siwei Zhang, Jiawei Zhang, Yiheng Sun

Simultaneously, resource consumption of a single-GPU can be diminished by up to 69%, thus enabling the multiple GPU-based training and acceleration encompassing millions of nodes and billions of edges.

Graph Embedding

Generic Attention-model Explainability by Weighted Relevance Accumulation

no code implementations20 Aug 2023 Yiming Huang, Aozhe Jia, Xiaodan Zhang, Jiawei Zhang

In this paper, we propose a weighted relevancy strategy, which takes the importance of token values into consideration, to reduce distortion when equally accumulating relevance.

Image Captioning Question Answering +1

RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs

1 code implementation14 Aug 2023 Zhouxia Wang, Jiawei Zhang, Tianshui Chen, Wenping Wang, Ping Luo

In this work, we propose RestoreFormer++, which on the one hand introduces fully-spatial attention mechanisms to model the contextual information and the interplay with the priors, and on the other hand, explores an extending degrading model to help generate more realistic degraded face images to alleviate the synthetic-to-real-world gap.

Blind Face Restoration

Dual Intents Graph Modeling for User-centric Group Discovery

1 code implementation9 Aug 2023 Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Jiawei Zhang

Therefore, user-centric group discovery task, i. e., recommending groups to users can help both users' online experiences and platforms' long-term developments.

Representation Learning Self-Supervised Learning

Efficient Region-Aware Neural Radiance Fields for High-Fidelity Talking Portrait Synthesis

1 code implementation ICCV 2023 Jiahe Li, Jiawei Zhang, Xiao Bai, Jun Zhou, Lin Gu

This paper presents ER-NeRF, a novel conditional Neural Radiance Fields (NeRF) based architecture for talking portrait synthesis that can concurrently achieve fast convergence, real-time rendering, and state-of-the-art performance with small model size.

SummIt: Iterative Text Summarization via ChatGPT

1 code implementation24 May 2023 Haopeng Zhang, Xiao Liu, Jiawei Zhang

Text summarization systems have made significant progress in recent years, but typically generate summaries in one single step.

Text Summarization

DiffuSum: Generation Enhanced Extractive Summarization with Diffusion

1 code implementation2 May 2023 Haopeng Zhang, Xiao Liu, Jiawei Zhang

This paper proposes DiffuSum, a novel paradigm for extractive summarization, by directly generating the desired summary sentence representations with diffusion models and extracting sentences based on sentence representation matching.

Diversity Extractive Summarization +1

Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Dataset Augmented by ChatGPT

1 code implementation Preprint 2023 Jiawei Zhang

Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer (Graph Reasoning oriented Toolformer) framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools.

Community Detection Graph Classification +6

Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT

1 code implementation10 Apr 2023 Jiawei Zhang

To address such challenges, in this paper, we will investigate the principles, methodologies and algorithms to empower existing LLMs with graph reasoning ability, which will have tremendous impacts on the current research of both LLMs and graph learning.

Graph Learning Knowledge Graphs +2

Extractive Summarization via ChatGPT for Faithful Summary Generation

no code implementations9 Apr 2023 Haopeng Zhang, Xiao Liu, Jiawei Zhang

In addition, we explore the effectiveness of in-context learning and chain-of-thought reasoning for enhancing its performance.

Extractive Summarization In-Context Learning +1

Graph Collaborative Signals Denoising and Augmentation for Recommendation

1 code implementation6 Apr 2023 Ziwei Fan, Ke Xu, Zhang Dong, Hao Peng, Jiawei Zhang, Philip S. Yu

Moreover, we show that the inclusion of user-user and item-item correlations can improve recommendations for users with both abundant and insufficient interactions.

Collaborative Filtering Denoising +1

AMC-Net: An Effective Network for Automatic Modulation Classification

no code implementations2 Apr 2023 Jiawei Zhang, Tiantian Wang, Zhixi Feng, Shuyuan Yang

Automatic modulation classification (AMC) is a crucial stage in the spectrum management, signal monitoring, and control of wireless communication systems.

Classification Denoising +2

Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System

no code implementations25 Mar 2023 Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, Haofen Wang, Jiawei Zhang

Large language models (LLMs) have demonstrated their significant potential to be applied for addressing various application tasks.

In-Context Learning Recommendation Systems

Immune Defense: A Novel Adversarial Defense Mechanism for Preventing the Generation of Adversarial Examples

no code implementations8 Mar 2023 Jinwei Wang, Hao Wu, Haihua Wang, Jiawei Zhang, Xiangyang Luo, Bin Ma

Therefore, we propose a novel adversarial defense mechanism, which is referred to as immune defense and is the example-based pre-defense.

Adversarial Defense

Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise

no code implementations14 Feb 2023 Zijian Liu, Jiawei Zhang, Zhengyuan Zhou

For this class of problems, we propose the first variance-reduced accelerated algorithm and establish that it guarantees a high-probability convergence rate of $O(\log(T/\delta)T^{\frac{1-p}{2p-1}})$ under a mild condition, which is faster than $\Omega(T^{\frac{1-p}{3p-2}})$.

Stochastic Optimization

ConsRec: Learning Consensus Behind Interactions for Group Recommendation

1 code implementation7 Feb 2023 Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Jiawei Zhang, Yangyong Zhu, Philip S. Yu

Since group activities have become very common in daily life, there is an urgent demand for generating recommendations for a group of users, referred to as group recommendation task.

MULTI-VIEW LEARNING

Deep Dynamic Scene Deblurring from Optical Flow

no code implementations18 Jan 2023 Jiawei Zhang, Jinshan Pan, Daoye Wang, Shangchen Zhou, Xing Wei, Furong Zhao, Jianbo Liu, Jimmy Ren

In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN).

Deblurring Optical Flow Estimation

Revisiting the Linear-Programming Framework for Offline RL with General Function Approximation

no code implementations28 Dec 2022 Asuman Ozdaglar, Sarath Pattathil, Jiawei Zhang, Kaiqing Zhang

Offline reinforcement learning (RL) aims to find an optimal policy for sequential decision-making using a pre-collected dataset, without further interaction with the environment.

Decision Making Offline RL +1

Mutimodal Ranking Optimization for Heterogeneous Face Re-identification

no code implementations11 Dec 2022 Hui Hu, Jiawei Zhang, Zhen Han

Secondly, we propose linear and non-linear fusion strategies to aggregate initial ranking lists of multimodal face pairs and acquire the optimized re-ranked list based on modal complementarity.

Robot Kinematics: Motion, Kinematics and Dynamics

no code implementations28 Nov 2022 Jiawei Zhang

As to some more advanced topics about robot control, we will introduce them in the following tutorial articles for readers instead.

Math

Coordinating CAV Swarms at Intersections with a Deep Learning Model

no code implementations10 Nov 2022 Jiawei Zhang, Shen Li, Li Li

Connected and automated vehicles (CAVs) are viewed as a special kind of robots that have the potential to significantly improve the safety and efficiency of traffic.

Scheduling

Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report

2 code implementations7 Nov 2022 Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Ganzorig Gankhuyag, Jingang Huh, Myeong Kyun Kim, Kihwan Yoon, Hyeon-Cheol Moon, Seungho Lee, Yoonsik Choe, Jinwoo Jeong, Sungjei Kim, Maciej Smyl, Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma, Jiahao Chao, Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng, Zhengyang Zhuge, Chenghua Li, Dan Zhu, Mengdi Sun, Ran Duan, Yan Gao, Lingshun Kong, Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan, Gaocheng Yu, Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang, Hojin Cho, Steve Kim, Huaen Li, Yanbo Ma, Ziwei Luo, Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu, Lize Zhang, Zhikai Zong, Jeremy Kwon, Junxi Zhang, Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen, Gen Li, Yuanfan Zhang, Lei Sun, Dafeng Zhang, Neo Yang, Fitz Liu, Jerry Zhao, Mustafa Ayazoglu, Bahri Batuhan Bilecen, Shota Hirose, Kasidis Arunruangsirilert, Luo Ao, Ho Chun Leung, Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu, Ao Li, Lei Luo, Ce Zhu, Seongmin Hong, Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun, Ruiyuan He, Xuhao Jiang, Haihang Ruan, Xinjian Zhang, Jing Liu, Garas Gendy, Nabil Sabor, Jingchao Hou, Guanghui He

While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints.

Image Super-Resolution

Robot Basics: Representation, Rotation and Velocity

no code implementations5 Nov 2022 Jiawei Zhang

In this article, we plan to provide an introduction about some basics about robots for readers.

Motion Planning

Self-Supervised Intensity-Event Stereo Matching

no code implementations1 Nov 2022 Jinjin Gu, Jinan Zhou, Ringo Sai Wo Chu, Yan Chen, Jiawei Zhang, Xuanye Cheng, Song Zhang, Jimmy S. Ren

Event cameras are novel bio-inspired vision sensors that output pixel-level intensity changes in microsecond accuracy with a high dynamic range and low power consumption.

Self-Supervised Learning Stereo Matching

When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work

no code implementations NeurIPS 2021 Jiawei Zhang, Yushun Zhang, Mingyi Hong, Ruoyu Sun, Zhi-Quan Luo

Third, we consider a constrained optimization formulation where the feasible region is the nice local region, and prove that every KKT point is a nearly global minimizer.

Degeneracy is OK: Logarithmic Regret for Network Revenue Management with Indiscrete Distributions

no code implementations14 Oct 2022 Jiashuo Jiang, Will Ma, Jiawei Zhang

We study the classical Network Revenue Management (NRM) problem with accept/reject decisions and $T$ IID arrivals.

Management

HEGEL: Hypergraph Transformer for Long Document Summarization

1 code implementation9 Oct 2022 Haopeng Zhang, Xiao Liu, Jiawei Zhang

Extractive summarization for long documents is challenging due to the extended structured input context.

Document Summarization Extractive Summarization +1

CARE: Certifiably Robust Learning with Reasoning via Variational Inference

1 code implementation12 Sep 2022 Jiawei Zhang, Linyi Li, Ce Zhang, Bo Li

In particular, we propose a certifiably robust learning with reasoning pipeline (CARE), which consists of a learning component and a reasoning component.

Variational Inference

Learning Diverse Tone Styles for Image Retouching

1 code implementation12 Jul 2022 Haolin Wang, Jiawei Zhang, Ming Liu, Xiaohe Wu, WangMeng Zuo

In particular, the style encoder predicts the target style representation of an input image, which serves as the conditional information in the RetouchNet for retouching, while the TSFlow maps the style representation vector into a Gaussian distribution in the forward pass.

Image Retouching

Learning to Order for Inventory Systems with Lost Sales and Uncertain Supplies

no code implementations10 Jul 2022 Boxiao Chen, Jiashuo Jiang, Jiawei Zhang, Zhengyuan Zhou

We aim to minimize the $T$-period cost, a problem that is known to be computationally intractable even under known distributions of demand and supply.

Iso-CapsNet: Isomorphic Capsule Network for Brain Graph Representation Learning

1 code implementation27 Jun 2022 Jiawei Zhang

Brain graph representation learning serves as the fundamental technique for brain diseases diagnosis.

Graph Representation Learning

Double Sampling Randomized Smoothing

2 code implementations16 Jun 2022 Linyi Li, Jiawei Zhang, Tao Xie, Bo Li

To overcome this hurdle, we propose a Double Sampling Randomized Smoothing (DSRS) framework, which exploits the sampled probability from an additional smoothing distribution to tighten the robustness certification of the previous smoothed classifier.

VPNets: Volume-preserving neural networks for learning source-free dynamics

1 code implementation29 Apr 2022 Aiqing Zhu, Beibei Zhu, Jiawei Zhang, Yifa Tang, Jian Liu

We propose volume-preserving networks (VPNets) for learning unknown source-free dynamical systems using trajectory data.

Self-recoverable Adversarial Examples: A New Effective Protection Mechanism in Social Networks

1 code implementation26 Apr 2022 Jiawei Zhang, Jinwei Wang, Hao Wang, Xiangyang Luo

The destruction to DNNs brought by the adversarial attack sparks the potential that adversarial examples serve as a new protection mechanism for privacy security in social networks.

Adversarial Attack Adversarial Defense +1

Revisiting Domain Generalized Stereo Matching Networks from a Feature Consistency Perspective

1 code implementation CVPR 2022 Jiawei Zhang, Xiang Wang, Xiao Bai, Chen Wang, Lei Huang, Yimin Chen, Lin Gu, Jun Zhou, Tatsuya Harada, Edwin R. Hancock

The stereo contrastive feature loss function explicitly constrains the consistency between learned features of matching pixel pairs which are observations of the same 3D points.

Contrastive Learning Stereo Matching

A Comprehensive Survey with Quantitative Comparison of Image Analysis Methods for Microorganism Biovolume Measurements

no code implementations18 Feb 2022 Jiawei Zhang, Chen Li, Md Mamunur Rahaman, YuDong Yao, Pingli Ma, Jinghua Zhang, Xin Zhao, Tao Jiang, Marcin Grzegorzek

This study has high research significance and application value, which can be referred to microbial researchers to have a comprehensive understanding of microorganism biovolume measurements using digital image analysis methods and potential applications.

Image Segmentation Semantic Segmentation

Measuring and Sampling: A Metric-guided Subgraph Learning Framework for Graph Neural Network

no code implementations30 Dec 2021 Jiyang Bai, Yuxiang Ren, Jiawei Zhang

We demonstrate the effectiveness and efficiency of MeGuide in training various GNNs on multiple datasets.

Graph Neural Network

A Self-supervised Mixed-curvature Graph Neural Network

no code implementations10 Dec 2021 Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, Philip S. Yu

Instead of working on one single constant-curvature space, we construct a mixed-curvature space via the Cartesian product of multiple Riemannian component spaces and design hierarchical attention mechanisms for learning and fusing the representations across these component spaces.

Contrastive Learning Graph Neural Network +1

Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with Bandit Feedback

1 code implementation6 Dec 2021 Wenjia Ba, Tianyi Lin, Jiawei Zhang, Zhengyuan Zhou

Leveraging self-concordant barrier functions, we first construct a new bandit learning algorithm and show that it achieves the single-agent optimal regret of $\tilde{\Theta}(n\sqrt{T})$ under smooth and strongly concave reward functions ($n \geq 1$ is the problem dimension).

EMDS-7: Environmental Microorganism Image Dataset Seventh Version for Multiple Object Detection Evaluation

no code implementations11 Oct 2021 Hechen Yang, Chen Li, Xin Zhao, Bencheng Cai, Jiawei Zhang, Pingli Ma, Peng Zhao, Ao Chen, Hongzan Sun, Yueyang Teng, Shouliang Qi, Tao Jiang, Marcin Grzegorzek

The Environmental Microorganism Image Dataset Seventh Version (EMDS-7) is a microscopic image data set, including the original Environmental Microorganism images (EMs) and the corresponding object labeling files in ". XML" format file.

Object object-detection +1

CARD: Certifiably Robust Machine Learning Pipeline via Domain Knowledge Integration

no code implementations29 Sep 2021 Jiawei Zhang, Linyi Li, Bo Li

In particular, we express the domain knowledge as first-order logic rules and embed these logic rules in a probabilistic graphical model.

BIG-bench Machine Learning

A Multi-Task Learning Algorithm for Non-personalized Recommendations

no code implementations29 Sep 2021 Jiawei Zhang

In this paper, we introduce a multi-task learning (MTL) algorithm for recommending non-personalized videos to watch next on industrial video sharing platforms.

Collaborative Filtering Multi-Task Learning +1

Targeted Cross-Validation

no code implementations14 Sep 2021 Jiawei Zhang, Jie Ding, Yuhong Yang

A standard approach is to find the globally best modeling method from a set of candidate methods.

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision

1 code implementation ICCV 2021 Zhilu Zhang, Haolin Wang, Ming Liu, Ruohao Wang, Jiawei Zhang, WangMeng Zuo

To diminish the effect of color inconsistency in image alignment, we introduce to use a global color mapping (GCM) module to generate an initial sRGB image given the input raw image, which can keep the spatial location of the pixels unchanged, and the target sRGB image is utilized to guide GCM for converting the color towards it.

Optical Flow Estimation

Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

1 code implementation14 Aug 2021 Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, Philip S. Yu

Therefore, we propose to unify sequential patterns and temporal collaborative signals to improve the quality of recommendation, which is rather challenging.

Sequential Recommendation

Blind Deblurring for Saturated Images

no code implementations CVPR 2021 Liang Chen, Jiawei Zhang, Songnan Lin, Faming Fang, Jimmy S. Ren

To address this problem, we introduce a new blur model to fit both saturated and unsaturated pixels, and all informative pixels can be considered during deblurring process.

Deblurring

Learning a Non-Blind Deblurring Network for Night Blurry Images

no code implementations CVPR 2021 Liang Chen, Jiawei Zhang, Jinshan Pan, Songnan Lin, Faming Fang, Jimmy S. Ren

Deblurring night blurry images is difficult, because the common-used blur model based on the linear convolution operation does not hold in this situation due to the influence of saturated pixels.

Deblurring Image Restoration

Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation

1 code implementation10 Jun 2021 Jiawei Zhang, Linyi Li, Huichen Li, Xiaolu Zhang, Shuang Yang, Bo Li

In this paper, we show that such efficiency highly depends on the scale at which the attack is applied, and attacking at the optimal scale significantly improves the efficiency.

Face Recognition

EchoCP: An Echocardiography Dataset in Contrast Transthoracic Echocardiography for Patent Foramen Ovale Diagnosis

no code implementations18 May 2021 Tianchen Wang, Zhihe Li, Meiping Huang, Jian Zhuang, Shanshan Bi, Jiawei Zhang, Yiyu Shi, Hongwen Fei, Xiaowei Xu

For PFO diagnosis, contrast transthoracic echocardiography (cTTE) is preferred as being a more robust method compared with others.

Drill the Cork of Information Bottleneck by Inputting the Most Important Data

no code implementations15 May 2021 Xinyu Peng, Jiawei Zhang, Fei-Yue Wang, Li Li

As a promising tool to better understand the learning dynamic of minibatch SGD, the information bottleneck (IB) theory claims that the optimization process consists of an initial fitting phase and the following compression phase.

A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches

no code implementations7 May 2021 Pingli Ma, Chen Li, Md Mamunur Rahaman, YuDong Yao, Jiawei Zhang, Shuojia Zou, Xin Zhao, Marcin Grzegorzek

In this review, first, we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods.

object-detection Object Detection

Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs

no code implementations6 Apr 2021 Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, Philip S. Yu

To model the uncertainty, we devise a hyperbolic graph variational autoencoder built upon the proposed TGNN to generate stochastic node representations of hyperbolic normal distributions.

Graph Neural Network

Pyramid U-Net for Retinal Vessel Segmentation

no code implementations6 Apr 2021 Jiawei Zhang, Yanchun Zhang, Xiaowei Xu

To further improve performance, two optimizations including pyramid inputs enhancement and deep pyramid supervision are applied to PSABs in the encoder and decoder, respectively.

Decoder Retinal Vessel Segmentation +1

Centrality Meets Centroid: A Graph-based Approach for Unsupervised Document Summarization

no code implementations29 Mar 2021 Haopeng Zhang, Jiawei Zhang

Unsupervised document summarization has re-acquired lots of attention in recent years thanks to its simplicity and data independence.

Document Summarization Extractive Document Summarization +1

Decentralized Non-Convex Learning with Linearly Coupled Constraints

no code implementations9 Mar 2021 Jiawei Zhang, Songyang Ge, Tsung-Hui Chang, Zhi-Quan Luo

Motivated by the need for decentralized learning, this paper aims at designing a distributed algorithm for solving nonconvex problems with general linear constraints over a multi-agent network.

Optimization and Control Systems and Control Systems and Control

Efficient Deep Image Denoising via Class Specific Convolution

no code implementations2 Mar 2021 Lu Xu, Jiawei Zhang, Xuanye Cheng, Feng Zhang, Xing Wei, Jimmy Ren

In this paper, we propose an efficient deep neural network for image denoising based on pixel-wise classification.

Image Denoising

Topology Learning Aided False Data Injection Attack without Prior Topology Information

no code implementations24 Feb 2021 Martin Higgins, Jiawei Zhang, Ning Zhang, Fei Teng

False Data Injection (FDI) attacks against powersystem state estimation are a growing concern for operators. Previously, most works on FDI attacks have been performedunder the assumption of the attacker having full knowledge ofthe underlying system without clear justification.

Measurement of the absolute branching fractions for purely leptonic $D_s^+$ decays

no code implementations23 Feb 2021 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, H. F. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, A. Q. Zhang, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Constraining our measurement to the Standard Model expectation of lepton universality ($R=9. 75$), we find the more precise results $\cal B(D_s^+\to \tau^+\nu_\tau) = (5. 22\pm0. 10\pm 0. 14)\times10^{-2}$ and $A_{\it CP}(\tau^\pm\nu_\tau) = (-0. 1\pm1. 9\pm1. 0)\%$.

High Energy Physics - Experiment

Cross section measurement of $e^+e^- \to p\bar{p}η$ and $e^+e^- \to p\bar{p}ω$ at center-of-mass energies between 3.773 GeV and 4.6 GeV

no code implementations8 Feb 2021 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N. Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Based on $14. 7~\textrm{fb}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at 17 different center-of-mass energies between $3. 7730~\textrm{GeV}$ and $4. 5995~\textrm{GeV}$, Born cross sections of the two processes $e^+e^- \to p\bar{p}\eta$ and $e^+e^- \to p\bar{p}\omega$ are measured for the first time.

High Energy Physics - Experiment

ObjectAug: Object-level Data Augmentation for Semantic Image Segmentation

no code implementations30 Jan 2021 Jiawei Zhang, Yanchun Zhang, Xiaowei Xu

In addition, ObjectAug can support category-aware augmentation that gives various possibilities to objects in each category, and can be easily combined with existing image-level augmentation methods to further boost performance.

Data Augmentation Image Inpainting +4

Adversarial Active Learning based Heterogeneous Graph Neural Network for Fake News Detection

no code implementations27 Jan 2021 Yuxiang Ren, Bo wang, Jiawei Zhang, Yi Chang

AA-HGNN utilizes an active learning framework to enhance learning performance, especially when facing the paucity of labeled data.

Active Learning Fake News Detection +3

Systematic electrochemical etching of various metal tips for tunneling spectroscopy and scanning probe microscopy

no code implementations18 Jan 2021 Jiawei Zhang, Pinyuan Wang, Xuao Zhang, Haoran Ji, Jiawei Luo, He Wang, Jian Wang

To ensure the reproducibility of experimental results, the fabrication of tips should be standardized, and a controllable and convenient system should be set up.

Materials Science

Measurements of the center-of-mass energies of $e^{+}e^{-}$ collisions at BESIII

no code implementations29 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, N Hüsken, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert,