no code implementations • CCL 2020 • Jialu Shi, Xinyu Luo, Liner Yang, Dan Xiao, Zhengsheng Hu, Yijun Wang, Jiaxin Yuan, Yu Jingsi, Erhong Yang
汉语学习者依存句法树库为非母语者语料提供依存句法分析, 可以支持第二语言教学与研究, 也对面向第二语言的句法分析、语法改错等相关研究具有重要意义。然而, 现有的汉语学习者依存句法树库数量较少, 且在标注方面仍存在一些问题。为此, 本文改进依存句法标注规范, 搭建在线标注平台, 并开展汉语学习者依存句法标注。本文重点介绍了数据选取、标注流程等问题, 并对标注结果进行质量分析, 探索二语偏误对标注质量与句法分析的影响。
no code implementations • 20 Nov 2024 • Yifan Yang, Qiao Jin, Robert Leaman, Xiaoyu Liu, Guangzhi Xiong, Maame Sarfo-Gyamfi, Changlin Gong, Santiago Ferrière-Steinert, W. John Wilbur, Xiaojun Li, Jiaxin Yuan, Bang An, Kelvin S. Castro, Francisco Erramuspe Álvarez, Matías Stockle, Aidong Zhang, Furong Huang, Zhiyong Lu
The remarkable capabilities of Large Language Models (LLMs) make them increasingly compelling for adoption in real-world healthcare applications.
1 code implementation • 23 Aug 2024 • Xiaoyu Liu, Jiaxin Yuan, YuHang Zhou, Jingling Li, Furong Huang, Wei Ai
The essence of sequential recommender systems (RecSys) lies in understanding how users make decisions.
1 code implementation • 23 Apr 2024 • Zezheng Song, Jiaxin Yuan, Haizhao Yang
The fast simulation of dynamical systems is a key challenge in many scientific and engineering applications, such as weather forecasting, disease control, and drug discovery.
no code implementations • 14 Mar 2024 • Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan Yang, YuHang Zhou, Fuxiao Liu, Tianrui Guan, Haoliang Wang, Tong Yu, Julian McAuley, Wei Ai, Furong Huang
Causal inference has shown potential in enhancing the predictive accuracy, fairness, robustness, and explainability of Natural Language Processing (NLP) models by capturing causal relationships among variables.
2 code implementations • 30 Oct 2023 • Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo, Xiaoyu Liu, Jiaxin Yuan, Pu Hua, Shuzhen Li, Yanjie Ze, Hal Daumé III, Furong Huang, Huazhe Xu
To quantify this inactivity, we adopt dormant ratio as a metric to measure inactivity in the RL agent's network.
1 code implementation • NeurIPS 2023 • Xiaoyu Liu, Jiaxin Yuan, Bang An, Yuancheng Xu, Yifan Yang, Furong Huang
Representation learning assumes that real-world data is generated by a few semantically meaningful generative factors (i. e., sources of variation) and aims to discover them in the latent space.
no code implementations • CCL 2022 • Jiaxin Yuan, Cunliang Kong, Chenhui Xie, Liner Yang, Erhong Yang
To the best of our knowledge, it is the largest dataset of the Chinese definition generation task.