no code implementations • 18 Sep 2023 • Zeyang Song, Jibin Wu, Malu Zhang, Mike Zheng Shou, Haizhou Li
Brain-inspired spiking neural networks (SNNs) have demonstrated great potential for temporal signal processing.
no code implementations • 29 Aug 2023 • Xinyi Chen, Jibin Wu, Huajin Tang, Qinyuan Ren, Kay Chen Tan
The human brain exhibits remarkable abilities in integrating temporally distant sensory inputs for decision-making.
no code implementations • 25 Aug 2023 • Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, Kay Chen Tan
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
no code implementations • 14 Jul 2023 • Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, Kay Chen Tan
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
no code implementations • 26 May 2023 • Xinyi Chen, Qu Yang, Jibin Wu, Haizhou Li, Kay Chen Tan
The biological neural systems evolved to adapt to ecological environment for efficiency and effectiveness, wherein neurons with heterogeneous structures and rich dynamics are optimized to accomplish complex cognitive tasks.
1 code implementation • 10 Oct 2022 • Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, Haizhou Li
The LTL rule follows the teacher-student learning approach by mimicking the intermediate feature representations of a pre-trained ANN.
1 code implementation • 30 Mar 2021 • Chenglin Xu, Wei Rao, Jibin Wu, Haizhou Li
Inspired by the study on target speaker extraction, e. g., SpEx, we propose a unified speaker verification framework for both single- and multi-talker speech, that is able to pay selective auditory attention to the target speaker.
no code implementations • 7 Jul 2020 • Zihan Pan, Malu Zhang, Jibin Wu, Haizhou Li
Inspired by the mammal's auditory localization pathway, in this paper we propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment, and implement this algorithm in a real-time robotic system with a microphone array.
no code implementations • 2 Jul 2020 • Jibin Wu, Cheng-Lin Xu, Daquan Zhou, Haizhou Li, Kay Chen Tan
In this paper, we propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition, which is referred to as progressive tandem learning of deep SNNs.
no code implementations • 3 Jun 2020 • Srivatsa P, Kyle Timothy Ng Chu, Burin Amornpaisannon, Yaswanth Tavva, Venkata Pavan Kumar Miriyala, Jibin Wu, Malu Zhang, Haizhou Li, Trevor E. Carlson
Rate-encoded SNNs could be seen as inefficient as an encoding scheme because it involves the transmission of a large number of spikes.
no code implementations • 26 Mar 2020 • Malu Zhang, Jiadong Wang, Burin Amornpaisannon, Zhixuan Zhang, VPK Miriyala, Ammar Belatreche, Hong Qu, Jibin Wu, Yansong Chua, Trevor E. Carlson, Haizhou Li
In STDBP algorithm, the timing of individual spikes is used to convey information (temporal coding), and learning (back-propagation) is performed based on spike timing in an event-driven manner.
1 code implementation • 19 Nov 2019 • Jibin Wu, Emre Yilmaz, Malu Zhang, Haizhou Li, Kay Chen Tan
The brain-inspired spiking neural networks (SNN) closely mimic the biological neural networks and can operate on low-power neuromorphic hardware with spike-based computation.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 12 Sep 2019 • Zihan Pan, Jibin Wu, Yansong Chua, Malu Zhang, Haizhou Li
We show that, with population neural codings, the encoded patterns are linearly separable using the Support Vector Machine (SVM).
no code implementations • 3 Sep 2019 • Zihan Pan, Yansong Chua, Jibin Wu, Malu Zhang, Haizhou Li, Eliathamby Ambikairajah
The neural encoding scheme, that we call Biologically plausible Auditory Encoding (BAE), emulates the functions of the perceptual components of the human auditory system, that include the cochlear filter bank, the inner hair cells, auditory masking effects from psychoacoustic models, and the spike neural encoding by the auditory nerve.
1 code implementation • 2 Jul 2019 • Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, Kay Chen Tan
Spiking neural networks (SNNs) represent the most prominent biologically inspired computing model for neuromorphic computing (NC) architectures.
no code implementations • 15 Feb 2019 • Jibin Wu, Yansong Chua, Malu Zhang, Qu Yang, Guoqi Li, Haizhou Li
Deep spiking neural networks (SNNs) support asynchronous event-driven computation, massive parallelism and demonstrate great potential to improve the energy efficiency of its synchronous analog counterpart.