1 code implementation • 13 Jun 2024 • Muyan Hu, Ashwin Venkatram, Shreyashri Biswas, Balamurugan Marimuthu, Bohan Hou, Gabriele Oliaro, Haojie Wang, Liyan Zheng, Xupeng Miao, Jidong Zhai
Prior approaches optimize kernel orchestration by greedily applying operator fusion, which fuses the computation of multiple operators into a single kernel, and miss a variety of optimization opportunities in kernel orchestration.
no code implementations • 11 Jul 2023 • Zixuan Ma, Haojie Wang, Jingze Xing, Liyan Zheng, Chen Zhang, Huanqi Cao, Kezhao Huang, Shizhi Tang, Penghan Wang, Jidong Zhai
To accelerate DNN computation, tensor compilers are proposed to generate efficient code on different domain-specific accelerators.
no code implementations • 18 Jan 2023 • Kezhao Huang, Haitian Jiang, Minjie Wang, Guangxuan Xiao, David Wipf, Xiang Song, Quan Gan, Zengfeng Huang, Jidong Zhai, Zheng Zhang
A key performance bottleneck when training graph neural network (GNN) models on large, real-world graphs is loading node features onto a GPU.
9 code implementations • 5 Oct 2022 • Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, WenGuang Chen, Peng Zhang, Yuxiao Dong, Jie Tang
We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters.
Ranked #1 on
Language Modelling
on CLUE (OCNLI_50K)
no code implementations • 4 Oct 2022 • Lunyiu Nie, Jiuding Sun, Yanlin Wang, Lun Du, Lei Hou, Juanzi Li, Shi Han, Dongmei Zhang, Jidong Zhai
The recent prevalence of pretrained language models (PLMs) has dramatically shifted the paradigm of semantic parsing, where the mapping from natural language utterances to structured logical forms is now formulated as a Seq2Seq task.
no code implementations • 2 Aug 2022 • Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei Wang, Shizhi Tang, Lei Xie, Kezhao Huang, Zhihao Jia
Boosting the runtime performance of deep neural networks (DNNs) is critical due to their wide adoption in real-world tasks.
1 code implementation • 24 May 2022 • Lunyiu Nie, Shulin Cao, Jiaxin Shi, Jiuding Sun, Qi Tian, Lei Hou, Juanzi Li, Jidong Zhai
Subject to the huge semantic gap between natural and formal languages, neural semantic parsing is typically bottlenecked by its complexity of dealing with both input semantics and output syntax.
no code implementations • 26 Mar 2022 • Sha Yuan, Hanyu Zhao, Shuai Zhao, Jiahong Leng, Yangxiao Liang, Xiaozhi Wang, Jifan Yu, Xin Lv, Zhou Shao, Jiaao He, Yankai Lin, Xu Han, Zhenghao Liu, Ning Ding, Yongming Rao, Yizhao Gao, Liang Zhang, Ming Ding, Cong Fang, Yisen Wang, Mingsheng Long, Jing Zhang, Yinpeng Dong, Tianyu Pang, Peng Cui, Lingxiao Huang, Zheng Liang, HuaWei Shen, HUI ZHANG, Quanshi Zhang, Qingxiu Dong, Zhixing Tan, Mingxuan Wang, Shuo Wang, Long Zhou, Haoran Li, Junwei Bao, Yingwei Pan, Weinan Zhang, Zhou Yu, Rui Yan, Chence Shi, Minghao Xu, Zuobai Zhang, Guoqiang Wang, Xiang Pan, Mengjie Li, Xiaoyu Chu, Zijun Yao, Fangwei Zhu, Shulin Cao, Weicheng Xue, Zixuan Ma, Zhengyan Zhang, Shengding Hu, Yujia Qin, Chaojun Xiao, Zheni Zeng, Ganqu Cui, Weize Chen, Weilin Zhao, Yuan YAO, Peng Li, Wenzhao Zheng, Wenliang Zhao, Ziyi Wang, Borui Zhang, Nanyi Fei, Anwen Hu, Zenan Ling, Haoyang Li, Boxi Cao, Xianpei Han, Weidong Zhan, Baobao Chang, Hao Sun, Jiawen Deng, Chujie Zheng, Juanzi Li, Lei Hou, Xigang Cao, Jidong Zhai, Zhiyuan Liu, Maosong Sun, Jiwen Lu, Zhiwu Lu, Qin Jin, Ruihua Song, Ji-Rong Wen, Zhouchen Lin, LiWei Wang, Hang Su, Jun Zhu, Zhifang Sui, Jiajun Zhang, Yang Liu, Xiaodong He, Minlie Huang, Jian Tang, Jie Tang
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm.
3 code implementations • 24 Mar 2021 • Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, Jie Tang
However, training trillion-scale MoE requires algorithm and system co-design for a well-tuned high performance distributed training system.
1 code implementation • 17 Aug 2020 • Zhixiang Ren, Yongheng Liu, Tianhui Shi, Lei Xie, Yue Zhou, Jidong Zhai, Youhui Zhang, Yunquan Zhang, WenGuang Chen
The de facto HPC benchmark LINPACK can not reflect AI computing power and I/O performance without representative workload.