1 code implementation • NAACL 2022 • Yue Yu, Lingkai Kong, Jieyu Zhang, Rongzhi Zhang, Chao Zhang
We develop AcTune, a new framework that improves the label efficiency of active PLM fine-tuning by unleashing the power of unlabeled data via self-training.
no code implementations • 11 Dec 2024 • Ziqi Gao, Weikai Huang, Jieyu Zhang, Aniruddha Kembhavi, Ranjay Krishna
We introduce Generate Any Scene, a framework that systematically enumerates scene graphs representing a vast array of visual scenes, spanning realistic to imaginative compositions.
1 code implementation • 11 Dec 2024 • Shijian Wang, Linxin Song, Jieyu Zhang, Ryotaro Shimizu, Ao Luo, Li Yao, Cunjian Chen, Julian McAuley, Hanqian Wu
Models tuned on our augmented dataset achieve the best overall performance when compared with the same scale MLMs tuned on at most 75 times the scale of our augmented dataset, highlighting the importance of instruction templates in MLM training.
1 code implementation • 9 Dec 2024 • Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai Huang, Manli Shu, An Yan, Zixian Ma, Juan Carlos Niebles, Silvio Savarese, Caiming Xiong, Zeyuan Chen, Ranjay Krishna, ran Xu
Our multi-image instruction data leads to an 8% improvement on Mantis-Eval.
Ranked #105 on Visual Question Answering on MM-Vet
1 code implementation • 7 Dec 2024 • Zixian Ma, JianGuo Zhang, Zhiwei Liu, Jieyu Zhang, Juntao Tan, Manli Shu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Caiming Xiong, Ranjay Krishna, Silvio Savarese
While open-source multi-modal language models perform well on simple question answering tasks, they often fail on complex questions that require multiple capabilities, such as fine-grained recognition, visual grounding, and reasoning, and that demand multi-step solutions.
Ranked #61 on Visual Question Answering on MM-Vet
no code implementations • 3 Nov 2024 • Shaokun Zhang, Jieyu Zhang, Dujian Ding, Mirian Hipolito Garcia, Ankur Mallick, Daniel Madrigal, Menglin Xia, Victor Rühle, Qingyun Wu, Chi Wang
Recent advancements have enabled Large Language Models (LLMs) to function as agents that can perform actions using external tools.
1 code implementation • 14 Oct 2024 • Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, Ranjay Krishna
To improve model-based preference evaluation, we introduce GED (Preference Graph Ensemble and Denoise), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensemble and denoise these graphs for better, non-contradictory evaluation results.
1 code implementation • 16 Aug 2024 • Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yutong Dai, Michael S Ryoo, Shrikant Kendre, Jieyu Zhang, Can Qin, Shu Zhang, Chia-Chih Chen, Ning Yu, Juntao Tan, Tulika Manoj Awalgaonkar, Shelby Heinecke, Huan Wang, Yejin Choi, Ludwig Schmidt, Zeyuan Chen, Silvio Savarese, Juan Carlos Niebles, Caiming Xiong, ran Xu
The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs.
no code implementations • 1 Jul 2024 • Zhengyu Hu, Linxin Song, Jieyu Zhang, Zheyuan Xiao, Tianfu Wang, Zhengyu Chen, Nicholas Jing Yuan, Jianxun Lian, Kaize Ding, Hui Xiong
The use of large language models (LLMs) as judges, particularly in preference comparisons, has become widespread, but this reveals a notable bias towards longer responses, undermining the reliability of such evaluations.
1 code implementation • 19 Jun 2024 • Hejie Cui, Lingjun Mao, Xin Liang, Jieyu Zhang, Hui Ren, Quanzheng Li, Xiang Li, Carl Yang
In this work, we propose a data-centric framework, Biomedical Visual Instruction Tuning with Clinician Preference Alignment (BioMed-VITAL), that incorporates clinician preferences into both stages of generating and selecting instruction data for tuning biomedical multimodal foundation models.
2 code implementations • 17 Jun 2024 • Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, HANLIN ZHANG, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, Vaishaal Shankar
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models.
1 code implementation • 17 Jun 2024 • Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha Kembhavi, Ranjay Krishna
As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case.
no code implementations • 29 May 2024 • Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, Chi Wang
Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks, while the effective design of multiple agents for a particular application remains an art.
no code implementations • CVPR 2024 • Chenhao Zheng, Jieyu Zhang, Aniruddha Kembhavi, Ranjay Krishna
A fundamental characteristic common to both human vision and natural language is their compositional nature.
no code implementations • 19 Mar 2024 • Hejie Cui, Zhuocheng Shen, Jieyu Zhang, Hui Shao, Lianhui Qin, Joyce C. Ho, Carl Yang
Electronic health records (EHRs) contain valuable patient data for health-related prediction tasks, such as disease prediction.
2 code implementations • 17 Mar 2024 • Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, Ranjay Krishna
With m&m's, we evaluate 10 popular LLMs with 2 planning strategies (multi-step vs. step-by-step planning), 2 plan formats (JSON vs. code), and 3 types of feedback (parsing/verification/execution).
1 code implementation • 17 Feb 2024 • Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, Qingyun Wu
Researchers and practitioners have recently reframed powerful Large Language Models (LLMs) as agents, enabling them to automate complex tasks largely via the use of specialized functions.
1 code implementation • 2 Feb 2024 • Jinyan Su, Peilin Yu, Jieyu Zhang, Stephen H. Bach
We propose a Structure Refining Module, a simple yet effective first approach based on the similarities of the prompts by taking advantage of the intrinsic structure in the embedding space.
1 code implementation • 13 Jan 2024 • Wenqi Shi, ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang, May D. Wang
Large language models (LLMs) have demonstrated exceptional capabilities in planning and tool utilization as autonomous agents, but few have been developed for medical problem-solving.
1 code implementation • 4 Dec 2023 • Zhengyu Hu, Jieyu Zhang, Yue Yu, Yuchen Zhuang, Hui Xiong
This paper presents LEMR (Label-Efficient Model Ranking) and introduces the MoraBench Benchmark.
1 code implementation • 3 Oct 2023 • Jieyu Zhang, Ranjay Krishna, Ahmed H. Awadallah, Chi Wang
Today, users ask Large language models (LLMs) as assistants to answer queries that require external knowledge; they ask about the weather in a specific city, about stock prices, and even about where specific locations are within their neighborhood.
1 code implementation • 27 Sep 2023 • Linxin Song, Jieyu Zhang, Lechao Cheng, Pengyuan Zhou, Tianyi Zhou, Irene Li
Recent developments in large language models (LLMs) have shown promise in enhancing the capabilities of natural language processing (NLP).
2 code implementations • NeurIPS 2023 • Dingshuo Chen, Yanqiao Zhu, Jieyu Zhang, Yuanqi Du, ZHIXUN LI, Qiang Liu, Shu Wu, Liang Wang
Molecular Representation Learning (MRL) has emerged as a powerful tool for drug and materials discovery in a variety of tasks such as virtual screening and inverse design.
1 code implementation • ICCV 2023 • Chengkai Hou, Jieyu Zhang, Tianyi Zhou
Unlike previous work, MADAug selects augmentation operators for each input image by a model-adaptive policy varying between training stages, producing a data augmentation curriculum optimized for better generalization.
2 code implementations • 16 Aug 2023 • Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, Chi Wang
AutoGen is an open-source framework that allows developers to build LLM applications via multiple agents that can converse with each other to accomplish tasks.
1 code implementation • 20 Jul 2023 • Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba, Shichang Zhang, Yizhou Sun, Wei Wang
Most of the existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations.
1 code implementation • ICCV 2023 • Chengkai Hou, Jieyu Zhang, Haonan Wang, Tianyi Zhou
We overcome these drawbacks by a novel ``subclass-balancing contrastive learning (SBCL)'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes and enforce representations to capture the two-layer class hierarchy between the original classes and their subclasses.
1 code implementation • NeurIPS 2023 • Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander Ratner, Ranjay Krishna, Jiaming Shen, Chao Zhang
Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks.
2 code implementations • NeurIPS 2023 • Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, Ranjay Krishna
In the last year alone, a surge of new benchmarks to measure compositional understanding of vision-language models have permeated the machine learning ecosystem.
no code implementations • 19 Jun 2023 • Linxin Song, Jieyu Zhang, Xiaotian Lu, Tianyi Zhou
Instead of tuning the coefficient for each query round, which is sensitive and time-consuming, we propose the curriculum Firth bias reduction (CHAIN) that can automatically adjust the coefficient to be adaptive to the training process.
no code implementations • NeurIPS 2023 • Jieyu Zhang, Bohan Wang, Zhengyu Hu, Pang Wei Koh, Alexander Ratner
Pre-training datasets are critical for building state-of-the-art machine learning models, motivating rigorous study on their impact on downstream tasks.
no code implementations • 3 May 2023 • Dong He, Jieyu Zhang, Maureen Daum, Alexander Ratner, Magdalena Balazinska
Machine learning tasks over image databases often generate masks that annotate image content (e. g., saliency maps, segmentation maps, depth maps) and enable a variety of applications (e. g., determine if a model is learning spurious correlations or if an image was maliciously modified to mislead a model).
3 code implementations • NeurIPS 2023 • Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt
Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms.
no code implementations • 30 Dec 2022 • Hong Guo, Yujing Wang, Jieyu Zhang, Zhengjie Lin, Yunhai Tong, Lei Yang, Luoxing Xiong, Congrui Huang
Time-series anomaly detection is an important task and has been widely applied in the industry.
1 code implementation • 20 Nov 2022 • Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, Xiaokui Xiao
To answer this question, we theoretically study the concentration property of features obtained by neighborhood aggregation on homophilic and heterophilic graphs, introduce the single-pass augmentation-free graph contrastive learning loss based on the property, and provide performance guarantees for the minimizer of the loss on downstream tasks.
2 code implementations • 6 Oct 2022 • Jieyu Zhang, Linxin Song, Alexander Ratner
In particular, it is built on a mixture of Bayesian label models, each corresponding to a global pattern of correlation, and the coefficients of the mixture components are predicted by a Gaussian Process classifier based on instance features.
2 code implementations • 6 Oct 2022 • Linxin Song, Jieyu Zhang, Tianxiang Yang, Masayuki Goto
To obtain a large amount of training labels inexpensively, researchers have recently adopted the weak supervision (WS) paradigm, which leverages labeling rules to synthesize training labels rather than using individual annotations to achieve competitive results for natural language processing (NLP) tasks.
1 code implementation • 15 Sep 2022 • Yue Yu, Rongzhi Zhang, ran Xu, Jieyu Zhang, Jiaming Shen, Chao Zhang
Large Language Models have demonstrated remarkable few-shot performance, but the performance can be sensitive to the selection of few-shot instances.
no code implementations • 2 Aug 2022 • Jieyu Zhang, Yujing Wang, Yaming Yang, Yang Luo, Alexander Ratner
Thus, in this work, we study the application of WS on binary classification tasks with positive labeling sources only.
1 code implementation • 27 Jul 2022 • Renzhi Wu, Shen-En Chen, Jieyu Zhang, Xu Chu
We train the model on synthetic data generated in the way that ensures the model approximates the analytical optimal solution, and build the model upon Graph Neural Network (GNN) to ensure the model prediction being invariant (or equivariant) to the permutation of LFs (or data points).
no code implementations • CVPR 2023 • Qiang He, Huangyuan Su, Jieyu Zhang, Xinwen Hou
In this work, we demonstrate that the learned representation of the $Q$-network and its target $Q$-network should, in theory, satisfy a favorable distinguishable representation property.
no code implementations • 25 May 2022 • Jieyu Zhang, Haonan Wang, Cheng-Yu Hsieh, Alexander Ratner
Programmatic Weak Supervision (PWS) aggregates the source votes of multiple weak supervision sources into probabilistic training labels, which are in turn used to train an end model.
no code implementations • 11 Apr 2022 • Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang
Graph contrastive learning (GCL) is the most representative and prevalent self-supervised learning approach for graph-structured data.
no code implementations • 13 Mar 2022 • Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, Shu Wu
In this paper, we conduct a comprehensive review on the existing literature of deep graph generation from a variety of emerging methods to its wide application areas.
1 code implementation • 2 Mar 2022 • Cheng-Yu Hsieh, Jieyu Zhang, Alexander Ratner
Weak Supervision (WS) techniques allow users to efficiently create large training datasets by programmatically labeling data with heuristic sources of supervision.
1 code implementation • 11 Feb 2022 • Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, Alexander Ratner
Labeling training data has become one of the major roadblocks to using machine learning.
no code implementations • 10 Feb 2022 • Minhao Jiang, Xiangchen Song, Jieyu Zhang, Jiawei Han
Taxonomies are fundamental to many real-world applications in various domains, serving as structural representations of knowledge.
1 code implementation • 16 Dec 2021 • Yue Yu, Lingkai Kong, Jieyu Zhang, Rongzhi Zhang, Chao Zhang
We propose {\ours}, a new framework that leverages unlabeled data to improve the label efficiency of active PLM fine-tuning.
no code implementations • NeurIPS 2021 • Bohan Wang, Huishuai Zhang, Jieyu Zhang, Qi Meng, Wei Chen, Tie-Yan Liu
We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance if both the prior and the posterior are jointly optimized.
no code implementations • ICLR 2022 • Jieyu Zhang, Bohan Wang, Xiangchen Song, Yujing Wang, Yaming Yang, Jing Bai, Alexander Ratner
Creating labeled training sets has become one of the major roadblocks in machine learning.
1 code implementation • 23 Sep 2021 • Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, Alexander Ratner
To address these problems, we introduce a benchmark platform, WRENCH, for thorough and standardized evaluation of WS approaches.
no code implementations • NeurIPS 2021 • Bohan Wang, Huishuai Zhang, Jieyu Zhang, Qi Meng, Wei Chen, Tie-Yan Liu
We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance if both the prior and the posterior are jointly optimized.
no code implementations • 8 Apr 2021 • Xiangchen Song, Jiaming Shen, Jieyu Zhang, Jiawei Han
Taxonomies have been widely used in various machine learning and text mining systems to organize knowledge and facilitate downstream tasks.
no code implementations • 4 Mar 2021 • Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, Shu Wu
Specifically, we first formulate a general pipeline of GSL and review state-of-the-art methods classified by the way of modeling graph structures, followed by applications of GSL across domains.
1 code implementation • 6 Jan 2021 • Jieyu Zhang, Xiangchen Song, Ying Zeng, Jiaze Chen, Jiaming Shen, Yuning Mao, Lei LI
Previous approaches focus on the taxonomy expansion, i. e. finding an appropriate hypernym concept from the taxonomy for a new query concept.
no code implementations • 4 Nov 2019 • Carl Yang, Jieyu Zhang, Haonan Wang, Sha Li, Myungwan Kim, Matt Walker, Yiou Xiao, Jiawei Han
While node semantics have been extensively explored in social networks, little research attention has been paid to profile edge semantics, i. e., social relations.
1 code implementation • 29 Sep 2019 • Carl Yang, Jieyu Zhang, Jiawei Han
While generalizing LP as a simple instance, NEP is far more powerful in its natural awareness of different types of objects and links, and the ability to automatically capture their important interaction patterns.