Search Results for author: Jin Zhu

Found 25 papers, 15 papers with code

MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention

1 code implementation16 Jun 2025 MiniMax, :, Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu, Chao Wang, Cheng Zhu, Chengjun Xiao, Chengyu Du, Chi Zhang, Chu Qiao, Chunhao Zhang, Chunhui Du, Congchao Guo, Da Chen, Deming Ding, Dianjun Sun, Dong Li, Enwei Jiao, Haigang Zhou, Haimo Zhang, Han Ding, Haohai Sun, HaoYu Feng, Huaiguang Cai, Haichao Zhu, Jian Sun, Jiaqi Zhuang, Jiaren Cai, Jiayuan Song, Jin Zhu, Jingyang Li, Jinhao Tian, Jinli Liu, Junhao Xu, Junjie Yan, Junteng Liu, Junxian He, Kaiyi Feng, Ke Yang, Kecheng Xiao, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Li, Lin Zheng, Linge Du, Lingyu Yang, Lunbin Zeng, Minghui Yu, Mingliang Tao, Mingyuan Chi, Mozhi Zhang, Mujie Lin, Nan Hu, Nongyu Di, Peng Gao, Pengfei Li, Pengyu Zhao, Qibing Ren, Qidi Xu, Qile Li, Qin Wang, Rong Tian, Ruitao Leng, Shaoxiang Chen, Shaoyu Chen, Shengmin Shi, Shitong Weng, Shuchang Guan, Shuqi Yu, Sichen Li, Songquan Zhu, Tengfei Li, Tianchi Cai, Tianrun Liang, Weiyu Cheng, Weize Kong, Wenkai Li, Xiancai Chen, Xiangjun Song, Xiao Luo, Xiao Su, Xiaobo Li, Xiaodong Han, Xinzhu Hou, Xuan Lu, Xun Zou, Xuyang Shen, Yan Gong, Yan Ma, Yang Wang, Yiqi Shi, Yiran Zhong, Yonghong Duan, Yongxiang Fu, Yongyi Hu, Yu Gao, Yuanxiang Fan, Yufeng Yang, Yuhao Li, Yulin Hu, Yunan Huang, Yunji Li, Yunzhi Xu, Yuxin Mao, Yuxuan Shi, Yuze Wenren, Zehan Li, Zelin Li, Zhanxu Tian, Zhengmao Zhu, Zhenhua Fan, Zhenzhen Wu, Zhichao Xu, Zhihang Yu, Zhiheng Lyu, Zhuo Jiang, Zibo Gao, Zijia Wu, Zijian Song, Zijun Sun

We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training.

Mixture-of-Experts Reinforcement Learning (RL)

Balancing Interference and Correlation in Spatial Experimental Designs: A Causal Graph Cut Approach

1 code implementation26 May 2025 Jin Zhu, Jingyi Li, Hongyi Zhou, Yinan Lin, Zhenhua Lin, Chengchun Shi

This paper focuses on the design of spatial experiments to optimize the amount of information derived from the experimental data and enhance the accuracy of the resulting causal effect estimator.

Semi-pessimistic Reinforcement Learning

no code implementations25 May 2025 Jin Zhu, Xin Zhou, Jiaang Yao, Gholamali Aminian, Omar Rivasplata, Simon Little, Lexin Li, Chengchun Shi

However, it faces challenges of distributional shift, where the learned policy may encounter unseen scenarios not covered in the offline data.

reinforcement-learning Reinforcement Learning +1

Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning

no code implementations3 Apr 2025 Kai Ye, Hongyi Zhou, Jin Zhu, Francesco Quinzan, Chengchung Shi

Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences.

Sparsity-Constraint Optimization via Splicing Iteration

no code implementations17 Jun 2024 Zezhi Wang, Jin Zhu, Junxian Zhu, Borui Tang, Hongmei Lin, Xueqin Wang

The numerical results on these specific tasks reveal that SCOPE perfectly identifies the true support set with a 10--1000 speedup over the standard exact solver, confirming SCOPE's algorithmic and theoretical merits.

skscope: Fast Sparsity-Constrained Optimization in Python

1 code implementation27 Mar 2024 Zezhi Wang, Jin Zhu, Peng Chen, Huiyang Peng, Xiaoke Zhang, Anran Wang, Junxian Zhu, Xueqin Wang

Applying iterative solvers on sparsity-constrained optimization (SCO) requires tedious mathematical deduction and careful programming/debugging that hinders these solvers' broad impact.

Robust Offline Reinforcement learning with Heavy-Tailed Rewards

1 code implementation28 Oct 2023 Jin Zhu, Runzhe Wan, Zhengling Qi, Shikai Luo, Chengchun Shi

This paper endeavors to augment the robustness of offline reinforcement learning (RL) in scenarios laden with heavy-tailed rewards, a prevalent circumstance in real-world applications.

Offline RL Off-policy evaluation +2

A Consistent and Scalable Algorithm for Best Subset Selection in Single Index Models

no code implementations12 Sep 2023 Borui Tang, Jin Zhu, Junxian Zhu, Xueqin Wang, Heping Zhang

SIMs provide an interpretable and flexible modeling framework for high-dimensional data, while best subset selection aims to find a sparse model from a large set of predictors.

Model Selection regression

Sequential Knockoffs for Variable Selection in Reinforcement Learning

no code implementations24 Mar 2023 Tao Ma, Jin Zhu, Hengrui Cai, Zhengling Qi, Yunxiao Chen, Chengchun Shi, Eric B. Laber

In real-world applications of reinforcement learning, it is often challenging to obtain a state representation that is parsimonious and satisfies the Markov property without prior knowledge.

reinforcement-learning Reinforcement Learning +1

A residual dense vision transformer for medical image super-resolution with segmentation-based perceptual loss fine-tuning

1 code implementation22 Feb 2023 Jin Zhu, Guang Yang, Pietro Lio

On the other hand, the segmentation-based perceptual loss increases $+0. 14$ dB PSNR on average for SOTA methods, including CNNs and vision transformers.

Image Segmentation Image Super-Resolution +2

An Instrumental Variable Approach to Confounded Off-Policy Evaluation

no code implementations29 Dec 2022 Yang Xu, Jin Zhu, Chengchun Shi, Shikai Luo, Rui Song

Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy.

Decision Making Off-policy evaluation

Off-Policy Confidence Interval Estimation with Confounded Markov Decision Process

1 code implementation22 Feb 2022 Chengchun Shi, Jin Zhu, Ye Shen, Shikai Luo, Hongtu Zhu, Rui Song

In this paper, we show that with some auxiliary variables that mediate the effect of actions on the system dynamics, the target policy's value is identifiable in a confounded Markov decision process.

Uncertainty Quantification

MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution

1 code implementation22 May 2021 Jin Zhu, Chuan Tan, Junwei Yang, Guang Yang, Pietro Lio'

We also employ transfer learning to enable MIASSR to tackle SR tasks of new medical modalities, such as cardiac MR images (ACDC) and chest computed tomography images (COVID-CT).

Image Super-Resolution Meta-Learning +1

Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance Imaging -- Mini Review, Comparison and Perspectives

no code implementations4 May 2021 Guang Yang, Jun Lv, Yutong Chen, Jiahao Huang, Jin Zhu

However, one drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities, limiting its usage in some clinical applications when imaging time is critical.

Compressive Sensing MRI Reconstruction

A Splicing Approach to Best Subset of Groups Selection

1 code implementation23 Apr 2021 Yanhang Zhang, Junxian Zhu, Jin Zhu, Xueqin Wang

Best subset of groups selection (BSGS) is the process of selecting a small part of non-overlapping groups to achieve the best interpretability on the response variable.

Variable Selection

Computational analysis of pathological image enables interpretable prediction for microsatellite instability

no code implementations7 Oct 2020 Jin Zhu, Wangwei Wu, Yuting Zhang, Shiyun Lin, Yukang Jiang, Ruixian Liu, Xueqin Wang

Microsatellite instability (MSI) is associated with several tumor types and its status has become increasingly vital in guiding patient treatment decisions.

Feature Importance whole slide images

Arbitrary Scale Super-Resolution for Brain MRI Images

1 code implementation5 Apr 2020 Chuan Tan, Jin Zhu, Pietro Lio'

A recent paper has proposed a novel meta-learning technique that uses a Weight Prediction Network to enable Super-Resolution on arbitrary scale factors using only a single neural network.

Brain Tumor Segmentation Image Super-Resolution +3

Ball: An R package for detecting distribution difference and association in metric spaces

1 code implementation9 Nov 2018 Jin Zhu, Wenliang Pan, Wei Zheng, Xueqin Wang

The rapid development of modern technology facilitates the appearance of numerous unprecedented complex data which do not satisfy the axioms of Euclidean geometry, while most of the statistical hypothesis tests are available in Euclidean or Hilbert spaces.

Computation

Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

1 code implementation5 Nov 2018 Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze

This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.

Brain Tumor Segmentation Prognosis +2

Lesion Focused Super-Resolution

2 code implementations15 Oct 2018 Jin Zhu, Guang Yang, Pietro Lio

Super-resolution (SR) for image enhancement has great importance in medical image applications.

Brain Tumor Segmentation Diagnostic +4

Cannot find the paper you are looking for? You can Submit a new open access paper.