no code implementations • 13 Sep 2024 • Yuliang Zhu, Jing Cheng, Zhuo-Xu Cui, Jianfeng Ren, Chengbo Wang, Dong Liang
However, current equivariant CNN methods fail to fully exploit these symmetry priors in dynamic MR imaging.
no code implementations • 8 Jul 2024 • Yuanyuan Liu, Jinwen Xie, Zhuo-Xu Cui, Qingyong Zhu, Jing Cheng, Dong Liang, Yanjie Zhu
In this study, a novel subject-specific unsupervised method based on the implicit neural representation is proposed to reconstruct T1rho-weighted images from highly undersampled k-space data, which only takes spatiotemporal coordinates as the input.
1 code implementation • 19 Apr 2024 • Jing Cheng, Ruigang Wang, Ian R. Manchester
We take a recently proposed Polyak Lojasiewicz network (PLNet) as an Lyapunov function and then parameterize the vector field as the descent directions of the Lyapunov function.
no code implementations • 25 Dec 2023 • Ziyan Chen, Jing Cheng
PGDUDST requires only 58% of the training time of RDLUF-MixS^2-9stg to achieve comparable reconstruction results.
no code implementations • 30 Aug 2023 • Zhuo-Xu Cui, Congcong Liu, Xiaohong Fan, Chentao Cao, Jing Cheng, Qingyong Zhu, Yuanyuan Liu, Sen Jia, Yihang Zhou, Haifeng Wang, Yanjie Zhu, Jianping Zhang, Qiegen Liu, Dong Liang
In order to enhance interpretability and overcome the acceleration limitations, this paper introduces an interpretable framework that unifies both $k$-space interpolation techniques and image-domain methods, grounded in the physical principles of heat diffusion equations.
1 code implementation • 22 Jun 2023 • Nicholas H. Barbara, Max Revay, Ruigang Wang, Jing Cheng, Ian R. Manchester
Neural networks are typically sensitive to small input perturbations, leading to unexpected or brittle behaviour.
no code implementations • 4 May 2023 • Zhuo-Xu Cui, Congcong Liu, Chentao Cao, Yuanyuan Liu, Jing Cheng, Qingyong Zhu, Yanjie Zhu, Haifeng Wang, Dong Liang
We theoretically uncovered that the combination of these challenges renders conventional deep learning methods that directly learn the mapping from a low-field MR image to a high-field MR image unsuitable.
no code implementations • 11 Apr 2023 • Zhuo-Xu Cui, Chentao Cao, Yue Wang, Sen Jia, Jing Cheng, Xin Liu, Hairong Zheng, Dong Liang, Yanjie Zhu
To overcome this challenge, we introduce a novel approach called SPIRiT-Diffusion, which is a diffusion model for k-space interpolation inspired by the iterative self-consistent SPIRiT method.
no code implementations • 14 Dec 2022 • Chentao Cao, Zhuo-Xu Cui, Jing Cheng, Sen Jia, Hairong Zheng, Dong Liang, Yanjie Zhu
Diffusion model is the most advanced method in image generation and has been successfully applied to MRI reconstruction.
no code implementations • 24 Nov 2022 • Zhuo-Xu Cui, Qingyong Zhu, Jing Cheng, Dong Liang
Recently, deep unfolding methods that guide the design of deep neural networks (DNNs) through iterative algorithms have received increasing attention in the field of inverse problems.
no code implementations • 2 Sep 2022 • Zhuo-Xu Cui, Chentao Cao, Shaonan Liu, Qingyong Zhu, Jing Cheng, Haifeng Wang, Yanjie Zhu, Dong Liang
Recently, score-based diffusion models have shown satisfactory performance in MRI reconstruction.
2 code implementations • 15 Aug 2022 • Hong Peng, Chen Jiang, Jing Cheng, Minghui Zhang, Shanshan Wang, Dong Liang, Qiegen Liu
At the prior learning stage, we first construct a large Hankel matrix from k-space data, then extract multiple structured k-space patches from the large Hankel matrix to capture the internal distribution among different patches.
1 code implementation • 11 Aug 2022 • Zhuo-Xu Cui, Sen Jia, Qingyong Zhu, Congcong Liu, Zhilang Qiu, Yuanyuan Liu, Jing Cheng, Haifeng Wang, Yanjie Zhu, Dong Liang
Recently, untrained neural networks (UNNs) have shown satisfactory performances for MR image reconstruction on random sampling trajectories without using additional full-sampled training data.
no code implementations • 17 Jul 2022 • Yuanyuan Liu, Dong Liang, Zhuo-Xu Cui, Yuxin Yang, Chentao Cao, Qingyong Zhu, Jing Cheng, Caiyun Shi, Haifeng Wang, Yanjie Zhu
Prospective reconstruction results further demonstrate the capability of the SMART method in accelerating MR T1\r{ho} imaging.
no code implementations • 18 Dec 2021 • Zhuo-Xu Cui, Jing Cheng, Qingyong Zhu, Yuanyuan Liu, Sen Jia, Kankan Zhao, Ziwen Ke, Wenqi Huang, Haifeng Wang, Yanjie Zhu, Dong Liang
Specifically, focusing on accelerated MRI, we unroll a zeroth-order algorithm, of which the network module represents the regularizer itself, so that the network output can be still covered by the regularization model.
no code implementations • 13 Apr 2021 • Wenqi Huang, Sen Jia, Ziwen Ke, Zhuo-Xu Cui, Jing Cheng, Yanjie Zhu, Dong Liang
Improving the image resolution and acquisition speed of magnetic resonance imaging (MRI) is a challenging problem.
no code implementations • 11 Mar 2021 • Guannan Geng, Qingyang Xiao, Shigan Liu, Xiaodong Liu, Jing Cheng, Yixuan Zheng, Dan Tong, Bo Zheng, Yiran Peng, Xiaomeng Huang, Kebin He, Qiang Zhang
Accordingly, a full-coverage high-resolution air pollutant dataset with timely updates and historical long-term records is essential to support both research and environmental management.
1 code implementation • 9 Mar 2021 • Ziwen Ke, Zhuo-Xu Cui, Wenqi Huang, Jing Cheng, Sen Jia, Haifeng Wang, Xin Liu, Hairong Zheng, Leslie Ying, Yanjie Zhu, Dong Liang
The nonlinear manifold is designed to characterize the temporal correlation of dynamic signals.
1 code implementation • 26 Oct 2020 • Wenqi Huang, Ziwen Ke, Zhuo-Xu Cui, Jing Cheng, Zhilang Qiu, Sen Jia, Leslie Ying, Yanjie Zhu, Dong Liang
However, the selection of the parameters of L+S is empirical, and the acceleration rate is limited, which are common failings of iterative compressed sensing MR imaging (CS-MRI) reconstruction methods.
no code implementations • 22 Jun 2020 • Ziwen Ke, Wenqi Huang, Jing Cheng, Zhuoxu Cui, Sen Jia, Haifeng Wang, Xin Liu, Hairong Zheng, Leslie Ying, Yanjie Zhu, Dong Liang
The deep learning methods have achieved attractive performance in dynamic MR cine imaging.
1 code implementation • 20 Dec 2019 • Ziwen Ke, Jing Cheng, Leslie Ying, Hairong Zheng, Yanjie Zhu, Dong Liang
Although these deep learning methods can improve the reconstruction quality compared with iterative methods without requiring complex parameter selection or lengthy reconstruction time, the following issues still need to be addressed: 1) all these methods are based on big data and require a large amount of fully sampled MRI data, which is always difficult to obtain for cardiac MRI; 2) the effect of coil correlation on reconstruction in deep learning methods for dynamic MR imaging has never been studied.
no code implementations • 7 Aug 2019 • Jing Cheng, Haifeng Wang, Leslie Ying, Dong Liang
Experi-ments on in vivo MR data demonstrate that the proposed method achieves supe-rior MR reconstructions from highly undersampled k-space data over other state-of-the-art image reconstruction methods.
no code implementations • 26 Jul 2019 • Dong Liang, Jing Cheng, Ziwen Ke, Leslie Ying
Image reconstruction from undersampled k-space data has been playing an important role for fast MRI.
no code implementations • 19 Jun 2019 • Jing Cheng, Haifeng Wang, Yanjie Zhu, Qiegen Liu, Qiyang Zhang, Ting Su, Jianwei Chen, Yongshuai Ge, Zhanli Hu, Xin Liu, Hairong Zheng, Leslie Ying, Dong Liang
Usually, acquiring less data is a direct but important strategy to address these issues.