Search Results for author: Jingwei Zhuo

Found 10 papers, 4 papers with code

Learning Multi-Stage Multi-Grained Semantic Embeddings for E-Commerce Search

no code implementations20 Mar 2023 Binbin Wang, Mingming Li, Zhixiong Zeng, Jingwei Zhuo, Songlin Wang, Sulong Xu, Bo Long, Weipeng Yan

Retrieving relevant items that match users' queries from billion-scale corpus forms the core of industrial e-commerce search systems, in which embedding-based retrieval (EBR) methods are prevailing.


Pre-training Tasks for User Intent Detection and Embedding Retrieval in E-commerce Search

1 code implementation12 Aug 2022 Yiming Qiu, Chenyu Zhao, Han Zhang, Jingwei Zhuo, TianHao Li, Xiaowei Zhang, Songlin Wang, Sulong Xu, Bo Long, Wen-Yun Yang

BERT-style models pre-trained on the general corpus (e. g., Wikipedia) and fine-tuned on specific task corpus, have recently emerged as breakthrough techniques in many NLP tasks: question answering, text classification, sequence labeling and so on.

Intent Detection Question Answering +3

WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation Models

no code implementations28 Feb 2022 Jingwei Zhuo, Bin Liu, Xiang Li, Han Zhu, Xiaoqiang Zhu

Motivated by the observation that model-free methods like behavioral retargeting (BR) and item-based collaborative filtering (ItemCF) hit different parts of the user-item relevance compared to neural sequential recommendation models, we propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, and fine-tuning.

Collaborative Filtering Sequential Recommendation +1

Learning Optimal Tree Models Under Beam Search

1 code implementation ICML 2020 Jingwei Zhuo, Ziru Xu, Wei Dai, Han Zhu, Han Li, Jian Xu, Kun Gai

Retrieving relevant targets from an extremely large target set under computational limits is a common challenge for information retrieval and recommendation systems.

Information Retrieval Recommendation Systems +1

Understanding MCMC Dynamics as Flows on the Wasserstein Space

1 code implementation1 Feb 2019 Chang Liu, Jingwei Zhuo, Jun Zhu

It is known that the Langevin dynamics used in MCMC is the gradient flow of the KL divergence on the Wasserstein space, which helps convergence analysis and inspires recent particle-based variational inference methods (ParVIs).

Novel Concepts Variational Inference

Understanding and Accelerating Particle-Based Variational Inference

1 code implementation4 Jul 2018 Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, Jun Zhu, Lawrence Carin

Particle-based variational inference methods (ParVIs) have gained attention in the Bayesian inference literature, for their capacity to yield flexible and accurate approximations.

Bayesian Inference Variational Inference

Learning Random Fourier Features by Hybrid Constrained Optimization

no code implementations7 Dec 2017 Jianqiao Wangni, Jingwei Zhuo, Jun Zhu

Since the algorithm consumes a major computation cost in the testing phase, we propose a novel teacher-learner framework of learning computation-efficient kernel embeddings from specific data.

Message Passing Stein Variational Gradient Descent

no code implementations ICML 2018 Jingwei Zhuo, Chang Liu, Jiaxin Shi, Jun Zhu, Ning Chen, Bo Zhang

Stein variational gradient descent (SVGD) is a recently proposed particle-based Bayesian inference method, which has attracted a lot of interest due to its remarkable approximation ability and particle efficiency compared to traditional variational inference and Markov Chain Monte Carlo methods.

Bayesian Inference Variational Inference

Cannot find the paper you are looking for? You can Submit a new open access paper.