Search Results for author: Jinman Kim

Found 67 papers, 26 papers with code

MAISY: Motion-Aware Image SYnthesis for Medical Image Motion Correction

no code implementations7 May 2025 Andrew Zhang, Hao Wang, Shuchang Ye, Michael Fulham, Jinman Kim

Patient motion during medical image acquisition causes blurring, ghosting, and distorts organs, which makes image interpretation challenging.

Generative Adversarial Network Image Generation +1

SMPL-GPTexture: Dual-View 3D Human Texture Estimation using Text-to-Image Generation Models

no code implementations17 Apr 2025 Mingxiao Tu, Shuchang Ye, Hoijoon Jung, Jinman Kim

Generating high-quality, photorealistic textures for 3D human avatars remains a fundamental yet challenging task in computer vision and multimedia field.

Human Mesh Recovery Text-to-Image Generation

Bridging the Semantic Gaps: Improving Medical VQA Consistency with LLM-Augmented Question Sets

no code implementations16 Apr 2025 Yongpei Ma, Pengyu Wang, Adam Dunn, Usman Naseem, Jinman Kim

To address this challenge, we propose a Semantically Equivalent Question Augmentation (SEQA) framework, which leverages large language models (LLMs) to generate diverse yet semantically equivalent rephrasings of questions.

Diversity Medical Visual Question Answering +4

LVMed-R2: Perception and Reflection-driven Complex Reasoning for Medical Report Generation

no code implementations2 Apr 2025 Hao Wang, Shuchang Ye, Jinghao Lin, Usman Naseem, Jinman Kim

To the best of our knowledge, this is the first work to introduce complex reasoning to the medical report generation (MRG) task.

Diagnostic Medical Report Generation +1

Multi-modal 3D Pose and Shape Estimation with Computed Tomography

no code implementations25 Mar 2025 Mingxiao Tu, Hoijoon Jung, Alireza Moghadam, Jineel Raythatha, Lachlan Allan, Jeremy Hsu, Andre Kyme, Jinman Kim

In perioperative care, precise in-bed 3D patient pose and shape estimation (PSE) can be vital in optimizing patient positioning in preoperative planning, enabling accurate overlay of medical images for augmented reality-based surgical navigation, and mitigating risks of prolonged immobility during recovery.

Computed Tomography (CT) Pose Estimation

Improving Lesion Segmentation in Medical Images by Global and Regional Feature Compensation

no code implementations12 Feb 2025 Chuhan Wang, Zhenghao Chen, Jean Y. H. Yang, Jinman Kim

The proposed GCU addresses resolution loss in the U-shaped backbone by preserving global contextual features and fine-grained details during multiscale downsampling.

Image Segmentation Lesion Segmentation +3

Advancing Deformable Medical Image Registration with Multi-axis Cross-covariance Attention

1 code implementation24 Dec 2024 Mingyuan Meng, Michael Fulham, Lei Bi, Jinman Kim

However, the high computation and memory loads of SA (growing quadratically with the spatial resolution) hinder transformers from processing subtle textural information in high-resolution image features, e. g., at the full and half image resolutions.

Deformable Medical Image Registration Image Registration +1

Language-guided Medical Image Segmentation with Target-informed Multi-level Contrastive Alignments

no code implementations18 Dec 2024 Mingjian Li, Mingyuan Meng, Shuchang Ye, David Dagan Feng, Lei Bi, Jinman Kim

TMCA enables target-informed cross-modality alignments and fine-grained text guidance to bridge the pattern gaps in language-guided segmentation.

Image Segmentation Medical Image Analysis +4

Automatic Left Ventricular Cavity Segmentation via Deep Spatial Sequential Network in 4D Computed Tomography Studies

no code implementations17 Dec 2024 Yuyu Guo, Lei Bi, Zhengbin Zhu, David Dagan Feng, Ruiyan Zhang, Qian Wang, Jinman Kim

Automated segmentation of left ventricular cavity (LVC) in temporal cardiac image sequences (multiple time points) is a fundamental requirement for quantitative analysis of its structural and functional changes.

Computed Tomography (CT) Segmentation

Improving Automatic Fetal Biometry Measurement with Swoosh Activation Function

no code implementations16 Dec 2024 Shijia Zhou, Euijoon Ahn, Hao Wang, Ann Quinton, Narelle Kennedy, Pradeeba Sridar, Ralph Nanan, Jinman Kim

To address these inadequacies, we propose a novel Swoosh Activation Function (SAF) designed to enhance the regularization of heatmaps produced by landmark detection algorithms.

Hyper-Fusion Network for Semi-Automatic Segmentation of Skin Lesions

no code implementations14 Dec 2024 Lei Bi, Michael Fulham, Jinman Kim

However, there are a limited number of FCN-based semi-automatic segmentation methods and all these methods focused on early-fusion, where the first few convolutional layers are used to fuse image features and user-inputs and then derive fused image features for segmentation.

Lesion Segmentation Segmentation +1

3DPX: Single Panoramic X-ray Analysis Guided by 3D Oral Structure Reconstruction

no code implementations27 Sep 2024 Xiaoshuang Li, Zimo Huang, Mingyuan Meng, Eduardo Delamare, Dagan Feng, Lei Bi, Bin Sheng, Lingyong Jiang, Bo Li, Jinman Kim

3DPX consists of (i) a novel progressive reconstruction network to improve 2D-to-3D reconstruction and, (ii) a contrastive-guided bidirectional multimodality alignment module for 3D-guided 2D PX classification and segmentation tasks.

3D Reconstruction Lesion Segmentation

SGSeg: Enabling Text-free Inference in Language-guided Segmentation of Chest X-rays via Self-guidance

1 code implementation7 Sep 2024 Shuchang Ye, Mingyuan Meng, Mingjian Li, Dagan Feng, Jinman Kim

Segmentation of infected areas in chest X-rays is pivotal for facilitating the accurate delineation of pulmonary structures and pathological anomalies.

Image Segmentation Pseudo Label +2

GVT2RPM: An Empirical Study for General Video Transformer Adaptation to Remote Physiological Measurement

no code implementations19 Jun 2024 Hao Wang, Euijoon Ahn, Jinman Kim

Further, due to their customization of the transformer architecture, they cannot use the advancements made in general video transformers (GVT).

Video Understanding

Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration

1 code implementation CVPR 2024 Mingyuan Meng, Dagan Feng, Lei Bi, Jinman Kim

However, due to the high computation/memory loads of self-attention, transformers are typically used at downsampled feature resolutions and cannot capture fine-grained long-range dependence at the full image resolution.

Deformable Medical Image Registration Image Registration +2

Dynamic Traceback Learning for Medical Report Generation

no code implementations24 Jan 2024 Shuchang Ye, Mingyuan Meng, Mingjian Li, Dagan Feng, Usman Naseem, Jinman Kim

Automated medical report generation has the potential to significantly reduce the workload associated with the time-consuming process of medical reporting.

Image to text Medical Report Generation +2

Enhancing medical vision-language contrastive learning via inter-matching relation modelling

no code implementations19 Jan 2024 Mingjian Li, Mingyuan Meng, Michael Fulham, David Dagan Feng, Lei Bi, Jinman Kim

These learned image representations can be transferred to and benefit various downstream medical vision tasks such as disease classification and segmentation.

Contrastive Learning Cross-Modal Retrieval +3

Full-resolution MLPs Empower Medical Dense Prediction

1 code implementation28 Nov 2023 Mingyuan Meng, Yuxin Xue, Dagan Feng, Lei Bi, Jinman Kim

This textural information is crucial for medical dense prediction as it can differentiate the subtle human anatomy in medical images.

Anatomy Image Restoration +1

PET Synthesis via Self-supervised Adaptive Residual Estimation Generative Adversarial Network

no code implementations24 Oct 2023 Yuxin Xue, Lei Bi, Yige Peng, Michael Fulham, David Dagan Feng, Jinman Kim

We introduce (1) An adaptive residual estimation mapping mechanism, AE-Net, designed to dynamically rectify the preliminary synthesized PET images by taking the residual map between the low-dose PET and synthesized output as the input, and (2) A self-supervised pre-training strategy to enhance the feature representation of the coarse generator.

Generative Adversarial Network

AutoFuse: Automatic Fusion Networks for Deformable Medical Image Registration

1 code implementation11 Sep 2023 Mingyuan Meng, Michael Fulham, Dagan Feng, Lei Bi, Jinman Kim

However, DNN-based registration needs to explore the spatial information of each image and fuse this information to characterize spatial correspondence.

Deformable Medical Image Registration Image Registration +1

Non-iterative Coarse-to-fine Transformer Networks for Joint Affine and Deformable Image Registration

1 code implementation7 Jul 2023 Mingyuan Meng, Lei Bi, Michael Fulham, Dagan Feng, Jinman Kim

Recently, Non-Iterative Coarse-to-finE (NICE) registration methods have been proposed to perform coarse-to-fine registration in a single network and showed advantages in both registration accuracy and runtime.

Image Registration Medical Image Analysis

Merging-Diverging Hybrid Transformer Networks for Survival Prediction in Head and Neck Cancer

1 code implementation7 Jul 2023 Mingyuan Meng, Lei Bi, Michael Fulham, Dagan Feng, Jinman Kim

In view of this, we propose a merging-diverging learning framework for survival prediction from multi-modality images.

Decoder Prediction +3

AdaMSS: Adaptive Multi-Modality Segmentation-to-Survival Learning for Survival Outcome Prediction from PET/CT Images

2 code implementations17 May 2023 Mingyuan Meng, Bingxin Gu, Michael Fulham, Shaoli Song, Dagan Feng, Lei Bi, Jinman Kim

Instead of adopting MTL, we propose a novel Segmentation-to-Survival Learning (SSL) strategy, where our AdaMSS is trained for tumor segmentation and survival prediction sequentially in two stages.

Multi-Task Learning Prediction +4

A Dual-branch Self-supervised Representation Learning Framework for Tumour Segmentation in Whole Slide Images

2 code implementations20 Mar 2023 Hao Wang, Euijoon Ahn, Jinman Kim

These SSL approaches, however, are not designed for handling multi-resolution WSIs, which limits their performance in learning discriminative image features.

Medical Image Analysis Representation Learning +3

A Review of Predictive and Contrastive Self-supervised Learning for Medical Images

no code implementations10 Feb 2023 Wei-Chien Wang, Euijoon Ahn, Dagan Feng, Jinman Kim

Over the last decade, supervised deep learning on manually annotated big data has been progressing significantly on computer vision tasks.

Deep Learning Medical Image Analysis +1

Explicit Abnormality Extraction for Unsupervised Motion Artifact Reduction in Magnetic Resonance Imaging

1 code implementation4 Jan 2023 Yusheng Zhou, Hao Li, Jianan Liu, Zhengmin Kong, Tao Huang, Euijoon Ahn, Zhihan Lv, Jinman Kim, David Dagan Feng

Motion artifacts compromise the quality of magnetic resonance imaging (MRI) and pose challenges to achieving diagnostic outcomes and image-guided therapies.

Diagnostic

Z-SSMNet: Zonal-aware Self-supervised Mesh Network for Prostate Cancer Detection and Diagnosis with Bi-parametric MRI

1 code implementation12 Dec 2022 Yuan Yuan, Euijoon Ahn, Dagan Feng, Mohamad Khadra, Jinman Kim

Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa).

Self-Supervised Learning

Brain Tumor Sequence Registration with Non-iterative Coarse-to-fine Networks and Dual Deep Supervision

1 code implementation15 Nov 2022 Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim

In this study, we focus on brain tumor sequence registration between pre-operative and follow-up Magnetic Resonance Imaging (MRI) scans of brain glioma patients, in the context of Brain Tumor Sequence Registration challenge (BraTS-Reg 2022).

Radiomics-enhanced Deep Multi-task Learning for Outcome Prediction in Head and Neck Cancer

2 code implementations10 Nov 2022 Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim

Recently, deep learning methods have been proposed to perform end-to-end outcome prediction so as to remove the reliance on manual segmentation.

Multi-Task Learning Prediction +2

Hyper-Connected Transformer Network for Multi-Modality PET-CT Segmentation

no code implementations28 Oct 2022 Lei Bi, Michael Fulham, Shaoli Song, David Dagan Feng, Jinman Kim

We also introduced a hyper connected fusion to fuse the contextual and complementary image features across multiple transformers in an iterative manner.

Segmentation Tumor Segmentation

Non-iterative Coarse-to-fine Registration based on Single-pass Deep Cumulative Learning

1 code implementation25 Jun 2022 Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim

Recently, iterative deep registration methods have been used to alleviate this limitation, where the transformations are iteratively learned in a coarse-to-fine manner.

Image Registration Medical Image Analysis

Unsupervised Representation Learning for 3D MRI Super Resolution with Degradation Adaptation

no code implementations13 May 2022 Jianan Liu, Hao Li, Tao Huang, Euijoon Ahn, Kang Han, Adeel Razi, Wei Xiang, Jinman Kim, David Dagan Feng

However, the difference in degradation representations between synthetic and authentic LR images suppresses the quality of SR images reconstructed from authentic LR images.

Image Registration Representation Learning +1

The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients

no code implementations13 Dec 2021 Bhakti Baheti, Satrajit Chakrabarty, Hamed Akbari, Michel Bilello, Benedikt Wiestler, Julian Schwarting, Evan Calabrese, Jeffrey Rudie, Syed Abidi, Mina Mousa, Javier Villanueva-Meyer, Brandon K. K. Fields, Florian Kofler, Russell Takeshi Shinohara, Juan Eugenio Iglesias, Tony C. W. Mok, Albert C. S. Chung, Marek Wodzinski, Artur Jurgas, Niccolo Marini, Manfredo Atzori, Henning Muller, Christoph Grobroehmer, Hanna Siebert, Lasse Hansen, Mattias P. Heinrich, Luca Canalini, Jan Klein, Annika Gerken, Stefan Heldmann, Alessa Hering, Horst K. Hahn, Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim, Ramy A. Zeineldin, Mohamed E. Karar, Franziska Mathis-Ullrich, Oliver Burgert, Javid Abderezaei, Aymeric Pionteck, Agamdeep Chopra, Mehmet Kurt, Kewei Yan, Yonghong Yan, Zhe Tang, Jianqiang Ma, Sahar Almahfouz Nasser, Nikhil Cherian Kurian, Mohit Meena, Saqib Shamsi, Amit Sethi, Nicholas J. Tustison, Brian B. Avants, Philip Cook, James C. Gee, Lin Tian, Hastings Greer, Marc Niethammer, Andrew Hoopes, Malte Hoffmann, Adrian V. Dalca, Stergios Christodoulidis, Theo Estiene, Maria Vakalopoulou, Nikos Paragios, Daniel S. Marcus, Christos Davatzikos, Aristeidis Sotiras, Bjoern Menze, Spyridon Bakas, Diana Waldmannstetter

Registration of longitudinal brain MRI scans containing pathologies is challenging due to dramatic changes in tissue appearance.

Descriptive Image Registration +1

Unsupervised Landmark Detection Based Spatiotemporal Motion Estimation for 4D Dynamic Medical Images

2 code implementations30 Sep 2021 Yuyu Guo, Lei Bi, Dongming Wei, Liyun Chen, Zhengbin Zhu, Dagan Feng, Ruiyan Zhang, Qian Wang, Jinman Kim

In the first stage, we process the raw dense image to extract sparse landmarks to represent the target organ anatomical topology and discard the redundant information that is unnecessary for motion estimation.

Anatomy Motion Estimation +1

DeepMTS: Deep Multi-task Learning for Survival Prediction in Patients with Advanced Nasopharyngeal Carcinoma using Pretreatment PET/CT

2 code implementations16 Sep 2021 Mingyuan Meng, Bingxin Gu, Lei Bi, Shaoli Song, David Dagan Feng, Jinman Kim

However, the models using the whole target regions will also include non-relevant background information, while the models using segmented tumor regions will disregard potentially prognostic information existing out of primary tumors (e. g., local lymph node metastasis and adjacent tissue invasion).

Computed Tomography (CT) Multi-Task Learning +4

Self-supervised Representation Learning Framework for Remote Physiological Measurement Using Spatiotemporal Augmentation Loss

1 code implementation16 Jul 2021 Hao Wang, Euijoon Ahn, Jinman Kim

To address these problems, we present a novel self-supervised spatiotemporal learning framework for remote physiological signal representation learning, where there is a lack of labelled training data.

Contrastive Learning Data Augmentation +3

A Spatial Guided Self-supervised Clustering Network for Medical Image Segmentation

1 code implementation11 Jul 2021 Euijoon Ahn, Dagan Feng, Jinman Kim

Hence, we propose a new spatial guided self-supervised clustering network (SGSCN) for medical image segmentation, where we introduce multiple loss functions designed to aid in grouping image pixels that are spatially connected and have similar feature representations.

Clustering Image Segmentation +3

Benchmarking for Biomedical Natural Language Processing Tasks with a Domain Specific ALBERT

1 code implementation9 Jul 2021 Usman Naseem, Adam G. Dunn, Matloob Khushi, Jinman Kim

We present BioALBERT, a domain-specific adaptation of A Lite Bidirectional Encoder Representations from Transformers (ALBERT), trained on biomedical (PubMed and PubMed Central) and clinical (MIMIC-III) corpora and fine tuned for 6 different tasks across 20 benchmark datasets.

Benchmarking Document Classification +7

Classifying vaccine sentiment tweets by modelling domain-specific representation and commonsense knowledge into context-aware attentive GRU

no code implementations17 Jun 2021 Usman Naseem, Matloob Khushi, Jinman Kim, Adam G. Dunn

In this study, to classify vaccine sentiment tweets with limited information, we present a novel end-to-end framework consisting of interconnected components that use domain-specific LM trained on vaccine-related tweets and models commonsense knowledge into a bidirectional gated recurrent network (CK-BiGRU) with context-aware attention.

Predicting Distant Metastases in Soft-Tissue Sarcomas from PET-CT scans using Constrained Hierarchical Multi-Modality Feature Learning

no code implementations23 Apr 2021 Yige Peng, Lei Bi, Ashnil Kumar, Michael Fulham, Dagan Feng, Jinman Kim

Most CNNs are designed for single-modality imaging data (CT or PET alone) and do not exploit the information embedded in PET-CT where there is a combination of an anatomical and functional imaging modality.

Management STS

Enhancing Medical Image Registration via Appearance Adjustment Networks

2 code implementations9 Mar 2021 Mingyuan Meng, Lei Bi, Michael Fulham, David Dagan Feng, Jinman Kim

In this study, we propose an Appearance Adjustment Network (AAN) to enhance the adaptability of DLRs to appearance variations.

Anatomy Computational Efficiency +2

BioALBERT: A Simple and Effective Pre-trained Language Model for Biomedical Named Entity Recognition

no code implementations19 Sep 2020 Usman Naseem, Matloob Khushi, Vinay Reddy, Sakthivel Rajendran, Imran Razzak, Jinman Kim

In recent years, with the growing amount of biomedical documents, coupled with advancement in natural language processing algorithms, the research on biomedical named entity recognition (BioNER) has increased exponentially.

Language Modeling Language Modelling +4

Deep Multi-Scale Resemblance Network for the Sub-class Differentiation of Adrenal Masses on Computed Tomography Images

no code implementations29 Jul 2020 Lei Bi, Jinman Kim, Tingwei Su, Michael Fulham, David Dagan Feng, Guang Ning

The application of CNNs, to adrenal masses is challenging due to large intra-class variations, large inter-class similarities and imbalanced training data due to the size of the mass lesions.

Computed Tomography (CT) Management

A Spatiotemporal Volumetric Interpolation Network for 4D Dynamic Medical Image

1 code implementation CVPR 2020 Yuyu Guo, Lei Bi, Euijoon Ahn, Dagan Feng, Qian Wang, Jinman Kim

SVIN introduces dual networks: first is the spatiotemporal motion network that leverages the 3D convolutional neural network (CNN) for unsupervised parametric volumetric registration to derive spatiotemporal motion field from two-image volumes; the second is the sequential volumetric interpolation network, which uses the derived motion field to interpolate image volumes, together with a new regression-based module to characterize the periodic motion cycles in functional organ structures.

Anatomy

High-parallelism Inception-like Spiking Neural Networks for Unsupervised Feature Learning

1 code implementation2 Dec 2019 Mingyuan Meng, Xingyu Yang, Lei Bi, Jinman Kim, Shanlin Xiao, Zhiyi Yu

Most STDP-based SNNs adopted a slow-learning Fully-Connected (FC) architecture and used a sub-optimal vote-based scheme for spike decoding.

General Classification Image Classification +1

Unsupervised Feature Learning with K-means and An Ensemble of Deep Convolutional Neural Networks for Medical Image Classification

no code implementations7 Jun 2019 Euijoon Ahn, Ashnil Kumar, Dagan Feng, Michael Fulham, Jinman Kim

Hence, we propose a new unsupervised feature learning method that learns feature representations to then differentiate dissimilar medical images using an ensemble of different convolutional neural networks (CNNs) and K-means clustering.

Clustering Deep Learning +4

Unsupervised Deep Transfer Feature Learning for Medical Image Classification

no code implementations15 Mar 2019 Euijoon Ahn, Ashnil Kumar, Dagan Feng, Michael Fulham, Jinman Kim

The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale, annotated training data.

General Classification Image Classification +1

Automated Segmentation of the Optic Disk and Cup using Dual-Stage Fully Convolutional Networks

no code implementations13 Feb 2019 Lei Bi, Yuyu Guo, Qian Wang, Dagan Feng, Michael Fulham, Jinman Kim

Our approach leverages deep residual architectures and FCNs and learns and infers the location of the optic cup and disk in a step-wise manner with fine-grained details.

Segmentation

Co-Learning Feature Fusion Maps from PET-CT Images of Lung Cancer

1 code implementation5 Oct 2018 Ashnil Kumar, Michael Fulham, Dagan Feng, Jinman Kim

Our aim is to improve fusion of the complementary information in multi-modality PET-CT with a new supervised convolutional neural network (CNN) that learns to fuse complementary information for multi-modality medical image analysis.

Medical Image Analysis Tumor Segmentation

Improving Automatic Skin Lesion Segmentation using Adversarial Learning based Data Augmentation

no code implementations23 Jul 2018 Lei Bi, Dagan Feng, Jinman Kim

Segmentation of skin lesions is considered as an important step in computer aided diagnosis (CAD) for automated melanoma diagnosis.

Data Augmentation Generative Adversarial Network +4

Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

no code implementations16 Jul 2018 Euijoon Ahn, Jinman Kim, Ashnil Kumar, Michael Fulham, Dagan Feng

The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems.

Medical Image Retrieval Retrieval

An unsupervised long short-term memory neural network for event detection in cell videos

no code implementations7 Sep 2017 Ha Tran Hong Phan, Ashnil Kumar, David Feng, Michael Fulham, Jinman Kim

We compared our method to several published supervised methods evaluated on the same dataset and to a supervised LSTM method with a similar design and configuration to our unsupervised method.

Event Detection

Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs)

2 code implementations31 Jul 2017 Lei Bi, Jinman Kim, Ashnil Kumar, Dagan Feng, Michael Fulham

Positron emission tomography (PET) image synthesis plays an important role, which can be used to boost the training data for computer aided diagnosis systems.

Computed Tomography (CT) Image Generation

Automatic Liver Lesion Detection using Cascaded Deep Residual Networks

no code implementations10 Apr 2017 Lei Bi, Jinman Kim, Ashnil Kumar, Dagan Feng

Recently, deep learning methods based on fully convolutional networks (FCNs) have been successful in many segmentation problems primarily because they leverage a large labelled dataset to hierarchically learn the features that best correspond to the shallow visual appearance as well as the deep semantics of the areas to be segmented.

Lesion Detection Segmentation +1

Cannot find the paper you are looking for? You can Submit a new open access paper.