no code implementations • 9 Nov 2021 • Jinning Li, Chen Tang, Masayoshi Tomizuka, Wei Zhan
Reinforcement Learning (RL) has been shown effective in domains where the agent can learn policies by actively interacting with its operating environment.
1 code implementation • 1 Oct 2021 • Jinning Li, Huajie Shao, Dachun Sun, Ruijie Wang, Yuchen Yan, Jinyang Li, Shengzhong Liu, Hanghang Tong, Tarek Abdelzaher
Inspired by total correlation in information theory, we propose the Information-Theoretic Variational Graph Auto-Encoder (InfoVGAE) that learns to project both users and content items (e. g., posts that represent user views) into an appropriate disentangled latent space.
no code implementations • 18 Feb 2021 • Jiachen Li, Hengbo Ma, Zhihao Zhang, Jinning Li, Masayoshi Tomizuka
Due to the existence of frequent interactions and uncertainty in the scene evolution, it is desired for the prediction system to enable relational reasoning on different entities and provide a distribution of future trajectories for each agent.
no code implementations • 17 Jan 2021 • Jinning Li, Liting Sun, Jianyu Chen, Masayoshi Tomizuka, Wei Zhan
To address this challenge, we propose a hierarchical behavior planning framework with a set of low-level safe controllers and a high-level reinforcement learning algorithm (H-CtRL) as a coordinator for the low-level controllers.
no code implementations • 18 Mar 2018 • Jinning Li, Si-Qi Liu, Mengyao Cao
Our scheme includes three models.