no code implementations • 24 Oct 2024 • Shancong Mou, Raviteja Vemulapalli, Shiyu Li, Yuxuan Liu, C Thomas, Meng Cao, Haoping Bai, Oncel Tuzel, Ping Huang, Jiulong Shan, Jianjun Shi
Synthetic defect data generation is a popular approach for mitigating data challenges.
no code implementations • 10 Oct 2024 • Xu Yao, Xiaoxu Wu, Xi Li, Huan Xu, Chenlei Li, Ping Huang, Si Li, Xiaoning Ma, Jiulong Shan
Manufacturing quality audits are pivotal for ensuring high product standards in mass production environments.
no code implementations • 6 Oct 2024 • Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan, Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, Philip S. Yu, Meng Cao
In this work, we propose that the optimal data for DPO has equal expected rewards for each token in winning and losing responses, as there is no difference in token importance.
no code implementations • 29 Jul 2024 • Tom Gunter, ZiRui Wang, Chong Wang, Ruoming Pang, Aonan Zhang, BoWen Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak Gopinath, Dian Ang Yap, Dong Yin, Feng Nan, Floris Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang, Jiarui Lu, John Peebles, Ke Ye, Mark Lee, Nan Du, Qibin Chen, Quentin Keunebroek, Sam Wiseman, Syd Evans, Tao Lei, Vivek Rathod, Xiang Kong, Xianzhi Du, Yanghao Li, Yongqiang Wang, Yuan Gao, Zaid Ahmed, Zhaoyang Xu, Zhiyun Lu, Al Rashid, Albin Madappally Jose, Alec Doane, Alfredo Bencomo, Allison Vanderby, Andrew Hansen, Ankur Jain, Anupama Mann Anupama, Areeba Kamal, Bugu Wu, Carolina Brum, Charlie Maalouf, Chinguun Erdenebileg, Chris Dulhanty, Dominik Moritz, Doug Kang, Eduardo Jimenez, Evan Ladd, Fangping Shi, Felix Bai, Frank Chu, Fred Hohman, Hadas Kotek, Hannah Gillis Coleman, Jane Li, Jeffrey Bigham, Jeffery Cao, Jeff Lai, Jessica Cheung, Jiulong Shan, Joe Zhou, John Li, Jun Qin, Karanjeet Singh, Karla Vega, Kelvin Zou, Laura Heckman, Lauren Gardiner, Margit Bowler, Maria Cordell, Meng Cao, Nicole Hay, Nilesh Shahdadpuri, Otto Godwin, Pranay Dighe, Pushyami Rachapudi, Ramsey Tantawi, Roman Frigg, Sam Davarnia, Sanskruti Shah, Saptarshi Guha, Sasha Sirovica, Shen Ma, Shuang Ma, Simon Wang, Sulgi Kim, Suma Jayaram, Vaishaal Shankar, Varsha Paidi, Vivek Kumar, Xin Wang, Xin Zheng, Walker Cheng, Yael Shrager, Yang Ye, Yasu Tanaka, Yihao Guo, Yunsong Meng, Zhao Tang Luo, Zhi Ouyang, Alp Aygar, Alvin Wan, Andrew Walkingshaw, Andy Narayanan, Antonie Lin, Arsalan Farooq, Brent Ramerth, Colorado Reed, Chris Bartels, Chris Chaney, David Riazati, Eric Liang Yang, Erin Feldman, Gabriel Hochstrasser, Guillaume Seguin, Irina Belousova, Joris Pelemans, Karen Yang, Keivan Alizadeh Vahid, Liangliang Cao, Mahyar Najibi, Marco Zuliani, Max Horton, Minsik Cho, Nikhil Bhendawade, Patrick Dong, Piotr Maj, Pulkit Agrawal, Qi Shan, Qichen Fu, Regan Poston, Sam Xu, Shuangning Liu, Sushma Rao, Tashweena Heeramun, Thomas Merth, Uday Rayala, Victor Cui, Vivek Rangarajan Sridhar, Wencong Zhang, Wenqi Zhang, Wentao Wu, Xingyu Zhou, Xinwen Liu, Yang Zhao, Yin Xia, Zhile Ren, Zhongzheng Ren
We present foundation language models developed to power Apple Intelligence features, including a ~3 billion parameter model designed to run efficiently on devices and a large server-based language model designed for Private Cloud Compute.
1 code implementation • 18 Jul 2024 • Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu, Xiang Kong, Aonan Zhang, Dian Ang Yap, Yizhe Zhang, Karsten Ahnert, Vik Kamath, Mathias Berglund, Dominic Walsh, Tobias Gindele, Juergen Wiest, Zhengfeng Lai, Xiaoming Wang, Jiulong Shan, Meng Cao, Ruoming Pang, ZiRui Wang
Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance.
1 code implementation • 26 May 2024 • Tianyi Bai, Hao Liang, Binwang Wan, Yanran Xu, Xi Li, Shiyu Li, Ling Yang, Bozhou Li, Yifan Wang, Bin Cui, Ping Huang, Jiulong Shan, Conghui He, Binhang Yuan, Wentao Zhang
Multimodal large language models (MLLMs) enhance the capabilities of standard large language models by integrating and processing data from multiple modalities, including text, vision, audio, video, and 3D environments.
no code implementations • 24 May 2024 • Jingyuan Zhu, Shiyu Li, Yuxuan Liu, Ping Huang, Jiulong Shan, Huimin Ma, Jian Yuan
Given a domain-specific object detection dataset, we first fine-tune a pre-trained diffusion model on both cropped foreground objects and entire images to fit target distributions.
1 code implementation • 19 Feb 2024 • Aiwei Liu, Haoping Bai, Zhiyun Lu, Xiang Kong, Simon Wang, Jiulong Shan, Meng Cao, Lijie Wen
In this paper, we propose a method to evaluate the response preference by using the output probabilities of response pairs under contrastive prompt pairs, which could achieve better performance on LLaMA2-7B and LLaMA2-13B compared to RLAIF.
1 code implementation • 11 Oct 2023 • Zhengfeng Lai, Haotian Zhang, BoWen Zhang, Wentao Wu, Haoping Bai, Aleksei Timofeev, Xianzhi Du, Zhe Gan, Jiulong Shan, Chen-Nee Chuah, Yinfei Yang, Meng Cao
For example, VeCLIP achieves up to +25. 2% gain in COCO and Flickr30k retrieval tasks under the 12M setting.
1 code implementation • 13 Jun 2023 • Haoping Bai, Shancong Mou, Tatiana Likhomanenko, Ramazan Gokberk Cinbis, Oncel Tuzel, Ping Huang, Jiulong Shan, Jianjun Shi, Meng Cao
We introduce the VISION Datasets, a diverse collection of 14 industrial inspection datasets, uniquely poised to meet these challenges.
2 code implementations • 19 May 2023 • Kaichao You, Guo Qin, Anchang Bao, Meng Cao, Ping Huang, Jiulong Shan, Mingsheng Long
Subsequently, we propose a novel Tune mode to bridge the gap between Eval mode and Deploy mode.
no code implementations • 24 Feb 2023 • Shancong Mou, Xiaoyi Gu, Meng Cao, Haoping Bai, Ping Huang, Jiulong Shan, Jianjun Shi
In this paper, we propose a Robust GAN-inversion (RGI) method with a provable robustness guarantee to achieve image restoration under unknown \textit{gross} corruptions, where a small fraction of pixels are completely corrupted.
1 code implementation • CVPR 2023 • Xuan Zhang, Shiyu Li, Xi Li, Ping Huang, Jiulong Shan, Ting Chen
In this study, we propose an improved model called DeSTSeg, which integrates a pre-trained teacher network, a denoising student encoder-decoder, and a segmentation network into one framework.
Ranked #52 on Anomaly Detection on MVTec AD (using extra training data)
no code implementations • 28 Mar 2022 • Shancong Mou, Meng Cao, Haoping Bai, Ping Huang, Jianjun Shi, Jiulong Shan
To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation.
no code implementations • 3 Mar 2022 • Shancong Mou, Meng Cao, Zhendong Hong, Ping Huang, Jiulong Shan, Jianjun Shi
Display front-of-screen (FOS) quality inspection is essential for the mass production of displays in the manufacturing process.
1 code implementation • ICLR 2022 • Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang, Bin Cui
Graph Neural Networks (GNNs) have achieved great success in various tasks, but their performance highly relies on a large number of labeled nodes, which typically requires considerable human effort.
no code implementations • 22 Nov 2021 • Haoping Bai, Meng Cao, Ping Huang, Jiulong Shan
On active learning task, our method achieves 97. 0% Top-1 Accuracy on CIFAR10 with 0. 1% annotated data, and 83. 9% Top-1 Accuracy on CIFAR100 with 10% annotated data.
1 code implementation • NeurIPS 2021 • Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang, Bin Cui
Message passing is the core of most graph models such as Graph Convolutional Network (GCN) and Label Propagation (LP), which usually require a large number of clean labeled data to smooth out the neighborhood over the graph.
no code implementations • NeurIPS 2021 • Haoping Bai, Meng Cao, Ping Huang, Jiulong Shan
While single-shot quantized neural architecture search enjoys flexibility in both model architecture and quantization policy, the combined search space comes with many challenges, including instability when training the weight-sharing supernet and difficulty in navigating the exponentially growing search space.
Hardware Aware Neural Architecture Search Model Optimization +2
no code implementations • 11 May 2021 • Xi Li, Meng Cao, Yingying Tang, Scott Johnston, Zhendong Hong, Huimin Ma, Jiulong Shan
Inspired by the observation that audiences have different visual preferences on foreground and background objects, we for the first time propose to use saliency masks in the evaluation processes of the task of video frame interpolation.