Search Results for author: Jo Schlemper

Found 25 papers, 15 papers with code

Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction

1 code implementation22 Dec 2020 Chen Qin, Jinming Duan, Kerstin Hammernik, Jo Schlemper, Thomas Küstner, René Botnar, Claudia Prieto, Anthony N. Price, Joseph V. Hajnal, Daniel Rueckert

The iterative model is embedded into a deep recurrent neural network which learns to recover the image via exploiting spatio-temporal redundancies in complementary domains.

De-aliasing Image Reconstruction

$Σ$-net: Systematic Evaluation of Iterative Deep Neural Networks for Fast Parallel MR Image Reconstruction

1 code implementation18 Dec 2019 Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Ronald M. Summers, Daniel Rueckert

Purpose: To systematically investigate the influence of various data consistency layers, (semi-)supervised learning and ensembling strategies, defined in a $\Sigma$-net, for accelerated parallel MR image reconstruction using deep learning.

Image Enhancement Image Reconstruction +1

$Σ$-net: Ensembled Iterative Deep Neural Networks for Accelerated Parallel MR Image Reconstruction

1 code implementation11 Dec 2019 Jo Schlemper, Chen Qin, Jinming Duan, Ronald M. Summers, Kerstin Hammernik

We explore an ensembled $\Sigma$-net for fast parallel MR imaging, including parallel coil networks, which perform implicit coil weighting, and sensitivity networks, involving explicit sensitivity maps.

Image Reconstruction SSIM

dAUTOMAP: decomposing AUTOMAP to achieve scalability and enhance performance

1 code implementation24 Sep 2019 Jo Schlemper, Ilkay Oksuz, James R. Clough, Jinming Duan, Andrew P. King, Julia A. Schnabel, Joseph V. Hajnal, Daniel Rueckert

AUTOMAP is a promising generalized reconstruction approach, however, it is not scalable and hence the practicality is limited.

Joint Motion Estimation and Segmentation from Undersampled Cardiac MR Image

no code implementations20 Aug 2019 Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert

Accelerating the acquisition of magnetic resonance imaging (MRI) is a challenging problem, and many works have been proposed to reconstruct images from undersampled k-space data.

Image Reconstruction Motion Estimation

Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation

no code implementations20 Aug 2019 Chen Chen, Cheng Ouyang, Giacomo Tarroni, Jo Schlemper, Huaqi Qiu, Wenjia Bai, Daniel Rueckert

In this work, we present a fully automatic method to segment cardiac structures from late-gadolinium enhanced (LGE) images without using labelled LGE data for training, but instead by transferring the anatomical knowledge and features learned on annotated balanced steady-state free precession (bSSFP) images, which are easier to acquire.

Semantic Segmentation Style Transfer +1

k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-temporal Correlations

1 code implementation22 Jul 2019 Chen Qin, Jo Schlemper, Jinming Duan, Gavin Seegoolam, Anthony Price, Joseph Hajnal, Daniel Rueckert

Experiments conducted on highly undersampled short-axis cardiac cine MRI scans demonstrate that our proposed method outperforms the current state-of-the-art dynamic MR reconstruction approaches both quantitatively and qualitatively.

Image Reconstruction

VS-Net: Variable splitting network for accelerated parallel MRI reconstruction

1 code implementation19 Jul 2019 Jinming Duan, Jo Schlemper, Chen Qin, Cheng Ouyang, Wenjia Bai, Carlo Biffi, Ghalib Bello, Ben Statton, Declan P. O'Regan, Daniel Rueckert

In this work, we propose a deep learning approach for parallel magnetic resonance imaging (MRI) reconstruction, termed a variable splitting network (VS-Net), for an efficient, high-quality reconstruction of undersampled multi-coil MR data.

MRI Reconstruction

Deep Hashing using Entropy Regularised Product Quantisation Network

no code implementations11 Feb 2019 Jo Schlemper, Jose Caballero, Andy Aitken, Joost van Amersfoort

In large scale systems, approximate nearest neighbour search is a crucial algorithm to enable efficient data retrievals.

Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach

1 code implementation26 Aug 2018 Jinming Duan, Ghalib Bello, Jo Schlemper, Wenjia Bai, Timothy J. W. Dawes, Carlo Biffi, Antonio de Marvao, Georgia Doumou, Declan P. O'Regan, Daniel Rueckert

The proposed pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialise atlas propagation.

Semantic Segmentation

Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

2 code implementations22 Aug 2018 Jo Schlemper, Ozan Oktay, Michiel Schaap, Mattias Heinrich, Bernhard Kainz, Ben Glocker, Daniel Rueckert

AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy.

General Classification Image Classification

Deep nested level sets: Fully automated segmentation of cardiac MR images in patients with pulmonary hypertension

no code implementations27 Jul 2018 Jinming Duan, Jo Schlemper, Wenjia Bai, Timothy J. W. Dawes, Ghalib Bello, Georgia Doumou, Antonio de Marvao, Declan P. O'Regan, Daniel Rueckert

In this paper we introduce a novel and accurate optimisation method for segmentation of cardiac MR (CMR) images in patients with pulmonary hypertension (PH).

Adversarial and Perceptual Refinement for Compressed Sensing MRI Reconstruction

1 code implementation28 Jun 2018 Maximilian Seitzer, Guang Yang, Jo Schlemper, Ozan Oktay, Tobias Würfl, Vincent Christlein, Tom Wong, Raad Mohiaddin, David Firmin, Jennifer Keegan, Daniel Rueckert, Andreas Maier

In addition, we introduce a semantic interpretability score, measuring the visibility of the region of interest in both ground truth and reconstructed images, which allows us to objectively quantify the usefulness of the image quality for image post-processing and analysis.

MRI Reconstruction

Joint Learning of Motion Estimation and Segmentation for Cardiac MR Image Sequences

1 code implementation11 Jun 2018 Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert

Cardiac motion estimation and segmentation play important roles in quantitatively assessing cardiac function and diagnosing cardiovascular diseases.

Cardiac Segmentation Motion Estimation +1

Attention-Gated Networks for Improving Ultrasound Scan Plane Detection

6 code implementations15 Apr 2018 Jo Schlemper, Ozan Oktay, Liang Chen, Jacqueline Matthew, Caroline Knight, Bernhard Kainz, Ben Glocker, Daniel Rueckert

We show that, when the base network has a high capacity, the incorporated attention mechanism can provide efficient object localisation while improving the overall performance.

Attention U-Net: Learning Where to Look for the Pancreas

27 code implementations11 Apr 2018 Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y. Hammerla, Bernhard Kainz, Ben Glocker, Daniel Rueckert

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes.

Brain Tumor Segmentation Pancreas Segmentation +1

Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction

3 code implementations5 Dec 2017 Chen Qin, Jo Schlemper, Jose Caballero, Anthony Price, Joseph V. Hajnal, Daniel Rueckert

In particular, the proposed architecture embeds the structure of the traditional iterative algorithms, efficiently modelling the recurrence of the iterative reconstruction stages by using recurrent hidden connections over such iterations.

Image Reconstruction

A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction

3 code implementations8 Apr 2017 Jo Schlemper, Jose Caballero, Joseph V. Hajnal, Anthony Price, Daniel Rueckert

Firstly, we show that when each 2D image frame is reconstructed independently, the proposed method outperforms state-of-the-art 2D compressed sensing approaches such as dictionary learning-based MR image reconstruction, in terms of reconstruction error and reconstruction speed.

Dictionary Learning Frame +1

Cannot find the paper you are looking for? You can Submit a new open access paper.