Search Results for author: Johan Mathe

Found 7 papers, 5 papers with code

ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain

no code implementations8 Sep 2024 Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree Vadgama, Erik Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matouš Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovač, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Mežnar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frederic Wantiez, Alexander Weers, Patrik Zajec, Blaž Škrlj, Nina Miolane

This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM).

Deep Learning Representation Learning

Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures

1 code implementation12 Jul 2024 Sophia Sanborn, Johan Mathe, Mathilde Papillon, Domas Buracas, Hansen J Lillemark, Christian Shewmake, Abby Bertics, Xavier Pennec, Nina Miolane

Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures.

The Selective G-Bispectrum and its Inversion: Applications to G-Invariant Networks

no code implementations10 Jul 2024 Simon Mataigne, Johan Mathe, Sophia Sanborn, Christopher Hillar, Nina Miolane

An important problem in signal processing and deep learning is to achieve \textit{invariance} to nuisance factors not relevant for the task.

Geomstats: A Python Package for Riemannian Geometry in Machine Learning

1 code implementation ICLR 2019 Nina Miolane, Alice Le Brigant, Johan Mathe, Benjamin Hou, Nicolas Guigui, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, Hatem Hajri, Yann Cabanes, Thomas Gerald, Paul Chauchat, Christian Shewmake, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec

We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more.

BIG-bench Machine Learning Clustering +2

PVNet: A LRCN Architecture for Spatio-Temporal Photovoltaic PowerForecasting from Numerical Weather Prediction

1 code implementation4 Feb 2019 Johan Mathe, Nina Miolane, Nicolas Sebastien, Jeremie Lequeux

In this paper, we introduce a Long-Term Recurrent Convolutional Network using Numerical Weather Predictions (NWP) to predict, in turn, PV production in the 24-hour and 48-hour forecast horizons.

geomstats: a Python Package for Riemannian Geometry in Machine Learning

2 code implementations ICLR 2019 Nina Miolane, Johan Mathe, Claire Donnat, Mikael Jorda, Xavier Pennec

This paper also presents a review of manifolds in machine learning and an overview of the geomstats package with examples demonstrating its use for efficient and user-friendly Riemannian geometry.

BIG-bench Machine Learning Riemannian optimization

Cannot find the paper you are looking for? You can Submit a new open access paper.