no code implementations • 15 Feb 2022 • Johannes Brandstetter, Max Welling, Daniel E. Worrall
In this paper, we present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity -- Lie point symmetry data augmentation (LPSDA).
1 code implementation • ICLR 2022 • Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, Max Welling
Including covariant information, such as position, force, velocity or spin is important in many tasks in computational physics and chemistry.
no code implementations • 21 Jun 2021 • Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, Johannes Brandstetter
The abundance of data has given machine learning considerable momentum in natural sciences and engineering.
no code implementations • 4 May 2021 • Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, Johannes Brandstetter
Recently, the application of machine learning models has gained momentum in natural sciences and engineering, which is a natural fit due to the abundance of data in these fields.
no code implementations • 2 Dec 2020 • Markus Holzleitner, Lukas Gruber, José Arjona-Medina, Johannes Brandstetter, Sepp Hochreiter
We prove under commonly used assumptions the convergence of actor-critic reinforcement learning algorithms, which simultaneously learn a policy function, the actor, and a value function, the critic.
2 code implementations • 13 Oct 2020 • Thomas Adler, Johannes Brandstetter, Michael Widrich, Andreas Mayr, David Kreil, Michael Kopp, Günter Klambauer, Sepp Hochreiter
On the few-shot datasets miniImagenet and tieredImagenet with small domain shifts, CHEF is competitive with state-of-the-art methods.
1 code implementation • 29 Sep 2020 • Vihang P. Patil, Markus Hofmarcher, Marius-Constantin Dinu, Matthias Dorfer, Patrick M. Blies, Johannes Brandstetter, Jose A. Arjona-Medina, Sepp Hochreiter
Align-RUDDER outperforms competitors on complex artificial tasks with delayed reward and few demonstrations.
General Reinforcement Learning
Multiple Sequence Alignment
+1
2 code implementations • ICLR 2021 • Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff, David Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, Sepp Hochreiter
The new update rule is equivalent to the attention mechanism used in transformers.
1 code implementation • NeurIPS 2020 • Michael Widrich, Bernhard Schäfl, Hubert Ramsauer, Milena Pavlović, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, Günter Klambauer
We show that the attention mechanism of transformer architectures is actually the update rule of modern Hopfield networks that can store exponentially many patterns.
no code implementations • 10 Nov 2019 • Frederik Kratzert, Daniel Klotz, Johannes Brandstetter, Pieter-Jan Hoedt, Grey Nearing, Sepp Hochreiter
Climate change affects occurrences of floods and droughts worldwide.
no code implementations • 30 Oct 2019 • Thomas Adler, Manuel Erhard, Mario Krenn, Johannes Brandstetter, Johannes Kofler, Sepp Hochreiter
In this work, we show that machine learning models can provide significant improvement over random search.
no code implementations • NeurIPS Workshop Deep_Invers 2019 • Michael Gillhofer, Hubert Ramsauer, Johannes Brandstetter, Bernhard Schäfl, Sepp Hochreiter
We propose a GAN based approach to solve inverse problems which have non-differential or non-continuous forward relations.
2 code implementations • NeurIPS 2019 • Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, Sepp Hochreiter
In MDPs the Q-values are equal to the expected immediate reward plus the expected future rewards.
Ranked #7 on
Atari Games
on Atari 2600 Bowling