no code implementations • 17 Mar 2022 • Tamara T. Mueller, Dmitrii Usynin, Johannes C. Paetzold, Daniel Rueckert, Georgios Kaissis
In this work, we study the applications of differential privacy (DP) in the context of graph-structured data.
no code implementations • 5 Feb 2022 • Tamara T. Mueller, Johannes C. Paetzold, Chinmay Prabhakar, Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis
In this work, we introduce differential privacy for graph-level classification, one of the key applications of machine learning on graphs.
1 code implementation • 24 Dec 2021 • Lucas Fidon, Suprosanna Shit, Ivan Ezhov, Johannes C. Paetzold, Sébastien Ourselin, Tom Vercauteren
Importantly, we explore the inclusion of a transformer in the bottleneck of the U-Net architecture.
no code implementations • 16 Nov 2021 • Leon Mächler, Ivan Ezhov, Florian Kofler, Suprosanna Shit, Johannes C. Paetzold, Timo Loehr, Benedikt Wiestler, Bjoern Menze
We propose a simple new aggregation strategy for federated learning that won the MICCAI Federated Tumor Segmentation Challenge 2021 (FETS), the first ever challenge on Federated Learning in the Machine Learning community.
no code implementations • 3 Sep 2021 • Suprosanna Shit, Ivan Ezhov, Leon Mächler, Abinav R., Jana Lipkova, Johannes C. Paetzold, Florian Kofler, Marie Piraud, Bjoern H. Menze
In this paper, we propose a neural solver to learn an optimal iterative scheme in a data-driven fashion for any class of PDEs.
1 code implementation • 30 Aug 2021 • Johannes C. Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Büschl, Chinmay Prabhakar, Mihail I. Todorov, Anjany Sekuboyina, Georgios Kaissis, Ali Ertürk, Stephan Günnemann, Bjoern H. Menze
Moreover, we benchmark numerous state-of-the-art graph learning algorithms on the biologically relevant tasks of vessel prediction and vessel classification using the introduced vessel graph dataset.
1 code implementation • CVPR 2021 • Suprosanna Shit, Johannes C. Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien P. W. Pluim, Ulrich Bauer, Bjoern H. Menze
Accurate segmentation of tubular, network-like structures, such as vessels, neurons, or roads, is relevant to many fields of research.
no code implementations • 22 Apr 2021 • Izabela Horvath, Johannes C. Paetzold, Oliver Schoppe, Rami Al-Maskari, Ivan Ezhov, Suprosanna Shit, Hongwei Li, Ali Ertuerk, Bjoern H. Menze
Novel multimodal imaging methods are capable of generating extensive, super high resolution datasets for preclinical research.
no code implementations • 4 Mar 2021 • Fabian Balsiger, Alain Jungo, Naren Akash R J, Jianan Chen, Ivan Ezhov, Shengnan Liu, Jun Ma, Johannes C. Paetzold, Vishva Saravanan R, Anjany Sekuboyina, Suprosanna Shit, Yannick Suter, Moshood Yekini, Guodong Zeng, Markus Rempfler
With this growth, however, come new challenges for the community.
1 code implementation • 29 Oct 2020 • Kelly Payette, Priscille de Dumast, Hamza Kebiri, Ivan Ezhov, Johannes C. Paetzold, Suprosanna Shit, Asim Iqbal, Romesa Khan, Raimund Kottke, Patrice Grehten, Hui Ji, Levente Lanczi, Marianna Nagy, Monika Beresova, Thi Dao Nguyen, Giancarlo Natalucci, Theofanis Karayannis, Bjoern Menze, Meritxell Bach Cuadra, Andras Jakab
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders.
no code implementations • 13 Jul 2020 • Amirhossein Bayat, Anjany Sekuboyina, Johannes C. Paetzold, Christian Payer, Darko Stern, Martin Urschler, Jan S. Kirschke, Bjoern H. Menze
The treatment of degenerative spinal disorders requires an understanding of the individual spinal anatomy and curvature in 3D.
no code implementations • 10 Jul 2020 • Stefan Gerl, Johannes C. Paetzold, Hailong He, Ivan Ezhov, Suprosanna Shit, Florian Kofler, Amirhossein Bayat, Giles Tetteh, Vasilis Ntziachristos, Bjoern Menze
Raster-scan optoacoustic mesoscopy (RSOM) is a powerful, non-invasive optical imaging technique for functional, anatomical, and molecular skin and tissue analysis.
1 code implementation • 22 Apr 2020 • Ahmad B Qasim, Ivan Ezhov, Suprosanna Shit, Oliver Schoppe, Johannes C. Paetzold, Anjany Sekuboyina, Florian Kofler, Jana Lipkova, Hongwei Li, Bjoern Menze
Exploiting learning algorithms under scarce data regimes is a limitation and a reality of the medical imaging field.
2 code implementations • 16 Mar 2020 • Suprosanna Shit, Johannes C. Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien P. W. Pluim, Ulrich Bauer, Bjoern H. Menze
Accurate segmentation of tubular, network-like structures, such as vessels, neurons, or roads, is relevant to many fields of research.
2 code implementations • 24 Jan 2020 • Anjany Sekuboyina, Malek E. Husseini, Amirhossein Bayat, Maximilian Löffler, Hans Liebl, Hongwei Li, Giles Tetteh, Jan Kukačka, Christian Payer, Darko Štern, Martin Urschler, Maodong Chen, Dalong Cheng, Nikolas Lessmann, Yujin Hu, Tianfu Wang, Dong Yang, Daguang Xu, Felix Ambellan, Tamaz Amiranashvili, Moritz Ehlke, Hans Lamecker, Sebastian Lehnert, Marilia Lirio, Nicolás Pérez de Olaguer, Heiko Ramm, Manish Sahu, Alexander Tack, Stefan Zachow, Tao Jiang, Xinjun Ma, Christoph Angerman, Xin Wang, Kevin Brown, Alexandre Kirszenberg, Élodie Puybareau, Di Chen, Yiwei Bai, Brandon H. Rapazzo, Timyoas Yeah, Amber Zhang, Shangliang Xu, Feng Hou, Zhiqiang He, Chan Zeng, Zheng Xiangshang, Xu Liming, Tucker J. Netherton, Raymond P. Mumme, Laurence E. Court, Zixun Huang, Chenhang He, Li-Wen Wang, Sai Ho Ling, Lê Duy Huynh, Nicolas Boutry, Roman Jakubicek, Jiri Chmelik, Supriti Mulay, Mohanasankar Sivaprakasam, Johannes C. Paetzold, Suprosanna Shit, Ivan Ezhov, Benedikt Wiestler, Ben Glocker, Alexander Valentinitsch, Markus Rempfler, Björn H. Menze, Jan S. Kirschke
Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel-level by a human-machine hybrid algorithm (https://osf. io/nqjyw/, https://osf. io/t98fz/).
1 code implementation • 29 Apr 2019 • Hongwei Li, Johannes C. Paetzold, Anjany Sekuboyina, Florian Kofler, Jian-Guo Zhang, Jan S. Kirschke, Benedikt Wiestler, Bjoern Menze
Synthesizing MR imaging sequences is highly relevant in clinical practice, as single sequences are often missing or are of poor quality (e. g. due to motion).