Search Results for author: Johannes C. Paetzold

Found 27 papers, 15 papers with code

A skeletonization algorithm for gradient-based optimization

1 code implementation ICCV 2023 Martin J. Menten, Johannes C. Paetzold, Veronika A. Zimmer, Suprosanna Shit, Ivan Ezhov, Robbie Holland, Monika Probst, Julia A. Schnabel, Daniel Rueckert

Finally, we demonstrate the utility of our algorithm by integrating it with two medical image processing applications that use gradient-based optimization: deep-learning-based blood vessel segmentation, and multimodal registration of the mandible in computed tomography and magnetic resonance images.


Link Prediction for Flow-Driven Spatial Networks

no code implementations25 Mar 2023 Bastian Wittmann, Johannes C. Paetzold, Chinmay Prabhakar, Daniel Rueckert, Bjoern Menze

In this work, we focus on link prediction for flow-driven spatial networks, which are embedded in a Euclidean space and relate to physical exchange and transportation processes (e. g., blood flow in vessels or traffic flow in road networks).

Link Prediction

Topologically faithful image segmentation via induced matching of persistence barcodes

1 code implementation28 Nov 2022 Nico Stucki, Johannes C. Paetzold, Suprosanna Shit, Bjoern Menze, Ulrich Bauer

In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching.

Image Segmentation Segmentation +1

Automated analysis of diabetic retinopathy using vessel segmentation maps as inductive bias

no code implementations28 Oct 2022 Linus Kreitner, Ivan Ezhov, Daniel Rueckert, Johannes C. Paetzold, Martin J. Menten

Recent studies suggest that early stages of diabetic retinopathy (DR) can be diagnosed by monitoring vascular changes in the deep vascular complex.

Image Quality Assessment Inductive Bias +2

Physiology-based simulation of the retinal vasculature enables annotation-free segmentation of OCT angiographs

1 code implementation22 Jul 2022 Martin J. Menten, Johannes C. Paetzold, Alina Dima, Bjoern H. Menze, Benjamin Knier, Daniel Rueckert

Encouraged by our method's competitive quantitative and superior qualitative performance, we believe that it constitutes a versatile tool to advance the quantitative analysis of OCTA images.

Benchmarking Retinal Vessel Segmentation +2

Differentially Private Graph Classification with GNNs

1 code implementation5 Feb 2022 Tamara T. Mueller, Johannes C. Paetzold, Chinmay Prabhakar, Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis

In this work, we introduce differential privacy for graph-level classification, one of the key applications of machine learning on graphs.

BIG-bench Machine Learning Graph Classification

FedCostWAvg: A new averaging for better Federated Learning

no code implementations16 Nov 2021 Leon Mächler, Ivan Ezhov, Florian Kofler, Suprosanna Shit, Johannes C. Paetzold, Timo Loehr, Benedikt Wiestler, Bjoern Menze

We propose a simple new aggregation strategy for federated learning that won the MICCAI Federated Tumor Segmentation Challenge 2021 (FETS), the first ever challenge on Federated Learning in the Machine Learning community.

Federated Learning Segmentation +1

Semi-Implicit Neural Solver for Time-dependent Partial Differential Equations

no code implementations3 Sep 2021 Suprosanna Shit, Ivan Ezhov, Leon Mächler, Abinav R., Jana Lipkova, Johannes C. Paetzold, Florian Kofler, Marie Piraud, Bjoern H. Menze

In this paper, we propose a neural solver to learn an optimal iterative scheme in a data-driven fashion for any class of PDEs.

Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience (VesselGraph)

1 code implementation30 Aug 2021 Johannes C. Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Büschl, Chinmay Prabhakar, Mihail I. Todorov, Anjany Sekuboyina, Georgios Kaissis, Ali Ertürk, Stephan Günnemann, Bjoern H. Menze

Moreover, we benchmark numerous state-of-the-art graph learning algorithms on the biologically relevant tasks of vessel prediction and vessel classification using the introduced vessel graph dataset.

Graph Learning

A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images

no code implementations10 Jul 2020 Stefan Gerl, Johannes C. Paetzold, Hailong He, Ivan Ezhov, Suprosanna Shit, Florian Kofler, Amirhossein Bayat, Giles Tetteh, Vasilis Ntziachristos, Bjoern Menze

Raster-scan optoacoustic mesoscopy (RSOM) is a powerful, non-invasive optical imaging technique for functional, anatomical, and molecular skin and tissue analysis.


DiamondGAN: Unified Multi-Modal Generative Adversarial Networks for MRI Sequences Synthesis

1 code implementation29 Apr 2019 Hongwei Li, Johannes C. Paetzold, Anjany Sekuboyina, Florian Kofler, Jian-Guo Zhang, Jan S. Kirschke, Benedikt Wiestler, Bjoern Menze

Synthesizing MR imaging sequences is highly relevant in clinical practice, as single sequences are often missing or are of poor quality (e. g. due to motion).

Image Generation

The Liver Tumor Segmentation Benchmark (LiTS)

6 code implementations13 Jan 2019 Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.

Benchmarking Computed Tomography (CT) +3

Cannot find the paper you are looking for? You can Submit a new open access paper.