Search Results for author: Johannes C. Paetzold

Found 16 papers, 8 papers with code

SoK: Differential Privacy on Graph-Structured Data

no code implementations17 Mar 2022 Tamara T. Mueller, Dmitrii Usynin, Johannes C. Paetzold, Daniel Rueckert, Georgios Kaissis

In this work, we study the applications of differential privacy (DP) in the context of graph-structured data.

Graph Learning

Differentially Private Graph Classification with GNNs

no code implementations5 Feb 2022 Tamara T. Mueller, Johannes C. Paetzold, Chinmay Prabhakar, Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis

In this work, we introduce differential privacy for graph-level classification, one of the key applications of machine learning on graphs.

Classification Graph Classification

FedCostWAvg: A new averaging for better Federated Learning

no code implementations16 Nov 2021 Leon Mächler, Ivan Ezhov, Florian Kofler, Suprosanna Shit, Johannes C. Paetzold, Timo Loehr, Benedikt Wiestler, Bjoern Menze

We propose a simple new aggregation strategy for federated learning that won the MICCAI Federated Tumor Segmentation Challenge 2021 (FETS), the first ever challenge on Federated Learning in the Machine Learning community.

Federated Learning Tumor Segmentation

Semi-Implicit Neural Solver for Time-dependent Partial Differential Equations

no code implementations3 Sep 2021 Suprosanna Shit, Ivan Ezhov, Leon Mächler, Abinav R., Jana Lipkova, Johannes C. Paetzold, Florian Kofler, Marie Piraud, Bjoern H. Menze

In this paper, we propose a neural solver to learn an optimal iterative scheme in a data-driven fashion for any class of PDEs.

Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience (VesselGraph)

1 code implementation30 Aug 2021 Johannes C. Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Büschl, Chinmay Prabhakar, Mihail I. Todorov, Anjany Sekuboyina, Georgios Kaissis, Ali Ertürk, Stephan Günnemann, Bjoern H. Menze

Moreover, we benchmark numerous state-of-the-art graph learning algorithms on the biologically relevant tasks of vessel prediction and vessel classification using the introduced vessel graph dataset.

Graph Learning

A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images

no code implementations10 Jul 2020 Stefan Gerl, Johannes C. Paetzold, Hailong He, Ivan Ezhov, Suprosanna Shit, Florian Kofler, Amirhossein Bayat, Giles Tetteh, Vasilis Ntziachristos, Bjoern Menze

Raster-scan optoacoustic mesoscopy (RSOM) is a powerful, non-invasive optical imaging technique for functional, anatomical, and molecular skin and tissue analysis.

DiamondGAN: Unified Multi-Modal Generative Adversarial Networks for MRI Sequences Synthesis

1 code implementation29 Apr 2019 Hongwei Li, Johannes C. Paetzold, Anjany Sekuboyina, Florian Kofler, Jian-Guo Zhang, Jan S. Kirschke, Benedikt Wiestler, Bjoern Menze

Synthesizing MR imaging sequences is highly relevant in clinical practice, as single sequences are often missing or are of poor quality (e. g. due to motion).

Image Generation

Cannot find the paper you are looking for? You can Submit a new open access paper.