no code implementations • 17 Jun 2025 • Fridolin Haugg, Grace Lee, John He, Leonard Nürnberg, Dennis Bontempi, Danielle S. Bitterman, Paul Catalano, Vasco Prudente, Dmitrii Glubokov, Andrew Warrington, Suraj Pai, Dirk De Ruysscher, Christian Guthier, Benjamin H. Kann, Vadim N. Gladyshev, Hugo JWL Aerts, Raymond H. Mak
Findings: For age estimation, FAHR-FaceAge had the lowest mean absolute error of 5. 1 years on public datasets, outperforming benchmark models and maintaining accuracy across the full human lifespan.
no code implementations • 23 Feb 2024 • Yining Zha, Benjamin H. Kann, Zezhong Ye, Anna Zapaishchykova, John He, Shu-Hui Hsu, Jonathan E. Leeman, Kelly J. Fitzgerald, David E. Kozono, Raymond H. Mak, Hugo J. W. L. Aerts
Thus, we explore the potential of delta radiomics from on-treatment magnetic resonance (MR) imaging to track radiation dose response, inform personalized radiotherapy dosing, and predict outcomes.
1 code implementation • 7 Sep 2021 • Michaela Hardt, Xiaoguang Chen, Xiaoyi Cheng, Michele Donini, Jason Gelman, Satish Gollaprolu, John He, Pedro Larroy, Xinyu Liu, Nick McCarthy, Ashish Rathi, Scott Rees, Ankit Siva, ErhYuan Tsai, Keerthan Vasist, Pinar Yilmaz, Muhammad Bilal Zafar, Sanjiv Das, Kevin Haas, Tyler Hill, Krishnaram Kenthapadi
We present Amazon SageMaker Clarify, an explainability feature for Amazon SageMaker that launched in December 2020, providing insights into data and ML models by identifying biases and explaining predictions.