no code implementations • 29 Jul 2024 • Tom Gunter, ZiRui Wang, Chong Wang, Ruoming Pang, Aonan Zhang, BoWen Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak Gopinath, Dian Ang Yap, Dong Yin, Feng Nan, Floris Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang, Jiarui Lu, John Peebles, Ke Ye, Mark Lee, Nan Du, Qibin Chen, Quentin Keunebroek, Sam Wiseman, Syd Evans, Tao Lei, Vivek Rathod, Xiang Kong, Xianzhi Du, Yanghao Li, Yongqiang Wang, Yuan Gao, Zaid Ahmed, Zhaoyang Xu, Zhiyun Lu, Al Rashid, Albin Madappally Jose, Alec Doane, Alfredo Bencomo, Allison Vanderby, Andrew Hansen, Ankur Jain, Anupama Mann Anupama, Areeba Kamal, Bugu Wu, Carolina Brum, Charlie Maalouf, Chinguun Erdenebileg, Chris Dulhanty, Dominik Moritz, Doug Kang, Eduardo Jimenez, Evan Ladd, Fangping Shi, Felix Bai, Frank Chu, Fred Hohman, Hadas Kotek, Hannah Gillis Coleman, Jane Li, Jeffrey Bigham, Jeffery Cao, Jeff Lai, Jessica Cheung, Jiulong Shan, Joe Zhou, John Li, Jun Qin, Karanjeet Singh, Karla Vega, Kelvin Zou, Laura Heckman, Lauren Gardiner, Margit Bowler, Maria Cordell, Meng Cao, Nicole Hay, Nilesh Shahdadpuri, Otto Godwin, Pranay Dighe, Pushyami Rachapudi, Ramsey Tantawi, Roman Frigg, Sam Davarnia, Sanskruti Shah, Saptarshi Guha, Sasha Sirovica, Shen Ma, Shuang Ma, Simon Wang, Sulgi Kim, Suma Jayaram, Vaishaal Shankar, Varsha Paidi, Vivek Kumar, Xin Wang, Xin Zheng, Walker Cheng, Yael Shrager, Yang Ye, Yasu Tanaka, Yihao Guo, Yunsong Meng, Zhao Tang Luo, Zhi Ouyang, Alp Aygar, Alvin Wan, Andrew Walkingshaw, Andy Narayanan, Antonie Lin, Arsalan Farooq, Brent Ramerth, Colorado Reed, Chris Bartels, Chris Chaney, David Riazati, Eric Liang Yang, Erin Feldman, Gabriel Hochstrasser, Guillaume Seguin, Irina Belousova, Joris Pelemans, Karen Yang, Keivan Alizadeh Vahid, Liangliang Cao, Mahyar Najibi, Marco Zuliani, Max Horton, Minsik Cho, Nikhil Bhendawade, Patrick Dong, Piotr Maj, Pulkit Agrawal, Qi Shan, Qichen Fu, Regan Poston, Sam Xu, Shuangning Liu, Sushma Rao, Tashweena Heeramun, Thomas Merth, Uday Rayala, Victor Cui, Vivek Rangarajan Sridhar, Wencong Zhang, Wenqi Zhang, Wentao Wu, Xingyu Zhou, Xinwen Liu, Yang Zhao, Yin Xia, Zhile Ren, Zhongzheng Ren
We present foundation language models developed to power Apple Intelligence features, including a ~3 billion parameter model designed to run efficiently on devices and a large server-based language model designed for Private Cloud Compute.
no code implementations • 14 Sep 2020 • Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, Eric Price
To illustrate the generality of our methods, we give optimal algorithms for testing collections of distributions and testing closeness with unequal sized samples.
1 code implementation • ECCV 2020 • William Peebles, John Peebles, Jun-Yan Zhu, Alexei Efros, Antonio Torralba
In this paper, we propose the Hessian Penalty, a simple regularization term that encourages the Hessian of a generative model with respect to its input to be diagonal.
no code implementations • 6 Jul 2019 • Maryam Aliakbarpour, Themis Gouleakis, John Peebles, Ronitt Rubinfeld, Anak Yodpinyanee
We then build on these lower bounds to give $\Omega(n/\log{n})$ lower bounds for testing monotonicity over a matching poset of size $n$ and significantly improved lower bounds over the hypercube poset.
no code implementations • 10 Apr 2018 • Ilias Diakonikolas, Daniel M. Kane, John Peebles
We give the first identity tester for this problem with {\em sub-learning} sample complexity in any fixed dimension and a nearly-matching sample complexity lower bound.
no code implementations • ICLR 2018 • Jerry Li, Aleksander Madry, John Peebles, Ludwig Schmidt
This suggests that such usage of the first order approximation of the discriminator, which is a de-facto standard in all the existing GAN dynamics, might be one of the factors that makes GAN training so challenging in practice.
no code implementations • 9 Aug 2017 • Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price
Our new upper and lower bounds show that the optimal sample complexity of identity testing is \[ \Theta\left( \frac{1}{\epsilon^2}\left(\sqrt{n \log(1/\delta)} + \log(1/\delta) \right)\right) \] for any $n, \varepsilon$, and $\delta$.
no code implementations • ICML 2018 • Jerry Li, Aleksander Madry, John Peebles, Ludwig Schmidt
While Generative Adversarial Networks (GANs) have demonstrated promising performance on multiple vision tasks, their learning dynamics are not yet well understood, both in theory and in practice.
no code implementations • 11 Nov 2016 • Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price
We study the fundamental problems of (i) uniformity testing of a discrete distribution, and (ii) closeness testing between two discrete distributions with bounded $\ell_2$-norm.