Search Results for author: John Reid

Found 3 papers, 1 papers with code

Can foundation models actively gather information in interactive environments to test hypotheses?

no code implementations9 Dec 2024 Nan Rosemary Ke, Danny P. Sawyer, Hubert Soyer, Martin Engelcke, David P Reichert, Drew A. Hudson, John Reid, Alexander Lerchner, Danilo Jimenez Rezende, Timothy P Lillicrap, Michael Mozer, Jane X Wang

While problem solving is a standard evaluation task for foundation models, a crucial component of problem solving -- actively and strategically gathering information to test hypotheses -- has not been closely investigated.

Object Recognition

Scaling Instructable Agents Across Many Simulated Worlds

no code implementations13 Mar 2024 SIMA Team, Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton, Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, Stephanie C. Y. Chan, Jeff Clune, Adrian Collister, Vikki Copeman, Alex Cullum, Ishita Dasgupta, Dario de Cesare, Julia Di Trapani, Yani Donchev, Emma Dunleavy, Martin Engelcke, Ryan Faulkner, Frankie Garcia, Charles Gbadamosi, Zhitao Gong, Lucy Gonzales, Kshitij Gupta, Karol Gregor, Arne Olav Hallingstad, Tim Harley, Sam Haves, Felix Hill, Ed Hirst, Drew A. Hudson, Jony Hudson, Steph Hughes-Fitt, Danilo J. Rezende, Mimi Jasarevic, Laura Kampis, Rosemary Ke, Thomas Keck, Junkyung Kim, Oscar Knagg, Kavya Kopparapu, Rory Lawton, Andrew Lampinen, Shane Legg, Alexander Lerchner, Marjorie Limont, YuLan Liu, Maria Loks-Thompson, Joseph Marino, Kathryn Martin Cussons, Loic Matthey, Siobhan Mcloughlin, Piermaria Mendolicchio, Hamza Merzic, Anna Mitenkova, Alexandre Moufarek, Valeria Oliveira, Yanko Oliveira, Hannah Openshaw, Renke Pan, Aneesh Pappu, Alex Platonov, Ollie Purkiss, David Reichert, John Reid, Pierre Harvey Richemond, Tyson Roberts, Giles Ruscoe, Jaume Sanchez Elias, Tasha Sandars, Daniel P. Sawyer, Tim Scholtes, Guy Simmons, Daniel Slater, Hubert Soyer, Heiko Strathmann, Peter Stys, Allison C. Tam, Denis Teplyashin, Tayfun Terzi, Davide Vercelli, Bojan Vujatovic, Marcus Wainwright, Jane X. Wang, Zhengdong Wang, Daan Wierstra, Duncan Williams, Nathaniel Wong, Sarah York, Nick Young

Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is a key challenge for creating general AI.

Amortized Planning with Large-Scale Transformers: A Case Study on Chess

1 code implementation7 Feb 2024 Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot Catt, John Reid, Cannada A. Lewis, Joel Veness, Tim Genewein

This paper uses chess, a landmark planning problem in AI, to assess transformers' performance on a planning task where memorization is futile $\unicode{x2013}$ even at a large scale.

Memorization

Cannot find the paper you are looking for? You can Submit a new open access paper.