Search Results for author: Jonas Ammeling

Found 13 papers, 5 papers with code

Histologic Dataset of Normal and Atypical Mitotic Figures on Human Breast Cancer (AMi-Br)

1 code implementation8 Jan 2025 Christof A. Bertram, Viktoria Weiss, Taryn A. Donovan, Sweta Banerjee, Thomas Conrad, Jonas Ammeling, Robert Klopfleisch, Christopher Kaltenecker, Marc Aubreville

Assessment of the density of mitotic figures (MFs) in histologic tumor sections is an important prognostic marker for many tumor types, including breast cancer.

Is Self-Supervision Enough? Benchmarking Foundation Models Against End-to-End Training for Mitotic Figure Classification

no code implementations9 Dec 2024 Jonathan Ganz, Jonas Ammeling, Emely Rosbach, Ludwig Lausser, Christof A. Bertram, Katharina Breininger, Marc Aubreville

Foundation models (FMs), i. e., models trained on a vast amount of typically unlabeled data, have become popular and available recently for the domain of histopathology.

Benchmarking

Re-identification from histopathology images

no code implementations19 Mar 2024 Jonathan Ganz, Jonas Ammeling, Samir Jabari, Katharina Breininger, Marc Aubreville

We predicted the source patient of a slide with F1 scores of 50. 16 % and 52. 30 % on the LSCC and LUAD datasets, respectively, and with 62. 31 % on our meningioma dataset.

Deep Learning

Rethinking U-net Skip Connections for Biomedical Image Segmentation

no code implementations13 Feb 2024 Frauke Wilm, Jonas Ammeling, Mathias Öttl, Rutger H. J. Fick, Marc Aubreville, Katharina Breininger

Previous works showed that the trained network layers differ in their susceptibility to this domain shift, e. g., shallow layers are more affected than deeper layers.

Image Segmentation Segmentation +1

Attention-based Multiple Instance Learning for Survival Prediction on Lung Cancer Tissue Microarrays

1 code implementation15 Dec 2022 Jonas Ammeling, Lars-Henning Schmidt, Jonathan Ganz, Tanja Niedermair, Christoph Brochhausen-Delius, Christian Schulz, Katharina Breininger, Marc Aubreville

Attention-based multiple instance learning (AMIL) algorithms have proven to be successful in utilizing gigapixel whole-slide images (WSIs) for a variety of different computational pathology tasks such as outcome prediction and cancer subtyping problems.

Multiple Instance Learning Prediction +2

Deep learning-based Subtyping of Atypical and Normal Mitoses using a Hierarchical Anchor-Free Object Detector

1 code implementation12 Dec 2022 Marc Aubreville, Jonathan Ganz, Jonas Ammeling, Taryn A. Donovan, Rutger H. J. Fick, Katharina Breininger, Christof A. Bertram

In this work, we perform, for the first time, automatic subtyping of mitotic figures into normal and atypical categories according to characteristic morphological appearances of the different phases of mitosis.

object-detection Object Detection

Cannot find the paper you are looking for? You can Submit a new open access paper.