no code implementations • 26 May 2025 • Jonas Spinner, Luigi Favaro, Peter Lippmann, Sebastian Pitz, Gerrit Gerhartz, Tilman Plehn, Fred A. Hamprecht
Lorentz-equivariant neural networks are becoming the leading architectures for high-energy physics.
1 code implementation • 16 Dec 2024 • Anja Butter, François Charton, Javier Mariño Villadamigo, Ayodele Ore, Tilman Plehn, Jonas Spinner
Usually, they are used to generate configurations with a fixed number of particles.
1 code implementation • 1 Nov 2024 • Johann Brehmer, Víctor Bresó, Pim de Haan, Tilman Plehn, Huilin Qu, Jonas Spinner, Jesse Thaler
We show that the Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) yields state-of-the-art performance for a wide range of machine learning tasks at the Large Hadron Collider.
1 code implementation • 23 May 2024 • Jonas Spinner, Victor Bresó, Pim de Haan, Tilman Plehn, Jesse Thaler, Johann Brehmer
We propose the Lorentz Geometric Algebra Transformer (L-GATr), a new multi-purpose architecture for high-energy physics.