no code implementations • ACL (WebNLG, INLG) 2020 • David Bergés, Roser Cantenys, Roger Creus, Oriol Domingo, José A. R. Fonollosa
This work describes the end-to-end system architecture presented at WebNLG Challenge 2020.
no code implementations • WMT (EMNLP) 2021 • Carlos Escolano, Ioannis Tsiamas, Christine Basta, Javier Ferrando, Marta R. Costa-Jussa, José A. R. Fonollosa
We fine-tune mBART50 using the filtered data, and additionally, we train a Transformer model on the same data from scratch.
no code implementations • WMT (EMNLP) 2020 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
In this article, we describe the TALP-UPC participation in the WMT20 news translation shared task for Tamil-English.
1 code implementation • ACL (WebNLG, INLG) 2020 • Oriol Domingo, David Bergés, Roser Cantenys, Roger Creus, José A. R. Fonollosa
establishes key guidelines on how, which and when Machine Translation (MT) techniques are worth applying to RDF-to-Text task.
no code implementations • 28 Jan 2025 • Miquel India, Javier Hernando, José A. R. Fonollosa
In this study we analyze how an appropriate fusion of both kind of features is able to obtain good results in these cases.
1 code implementation • 16 Feb 2024 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
The speech encoder seamlessly integrates with the MT model at inference, enabling direct translation from speech to text, across all languages supported by the MT model.
1 code implementation • 29 Sep 2023 • Casimiro Pio Carrino, Carlos Escolano, José A. R. Fonollosa
Our approach seeks to enhance cross-lingual QA transfer using a high-performing multilingual model trained on a large-scale dataset, complemented by a few thousand aligned QA examples across languages.
no code implementations • 2 Jun 2023 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
Our Speech Translation systems utilize foundation models for speech (wav2vec 2. 0) and text (mBART50).
1 code implementation • 19 Dec 2022 • Ioannis Tsiamas, José A. R. Fonollosa, Marta R. Costa-jussà
End-to-end Speech Translation is hindered by a lack of available data resources.
1 code implementation • 28 Oct 2022 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
Transformers have been the dominant architecture for Speech Translation in recent years, achieving significant improvements in translation quality.
2 code implementations • 9 Feb 2022 • Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonollosa, Marta R. Costa-jussà
Speech translation datasets provide manual segmentations of the audios, which are not available in real-world scenarios, and existing segmentation methods usually significantly reduce translation quality at inference time.
1 code implementation • ACL (IWSLT) 2021 • Gerard I. Gállego, Ioannis Tsiamas, Carlos Escolano, José A. R. Fonollosa, Marta R. Costa-jussà
Our submission also uses a custom segmentation algorithm that employs pre-trained Wav2Vec 2. 0 for identifying periods of untranscribable text and can bring improvements of 2. 5 to 3 BLEU score on the IWSLT 2019 test set, as compared to the result with the given segmentation.
Ranked #2 on
Speech-to-Text Translation
on MuST-C EN->DE
(using extra training data)
no code implementations • 2 Nov 2020 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa, Carlos Segura
On the other hand, Multilingual Neural Machine Translation (MultiNMT) approaches rely on higher-quality and more massive data sets.
no code implementations • 29 May 2020 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa, Mikel Artetxe
We propose a modular architecture of language-specific encoder-decoders that constitutes a multilingual machine translation system that can be incrementally extended to new languages without the need for retraining the existing system when adding new languages.
no code implementations • EACL 2021 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa, Mikel Artetxe
State-of-the-art multilingual machine translation relies on a universal encoder-decoder, which requires retraining the entire system to add new languages.
no code implementations • EMNLP (spnlp) 2020 • Noe Casas, José A. R. Fonollosa, Marta R. Costa-jussà
The dominant language modeling paradigm handles text as a sequence of discrete tokens.
3 code implementations • 11 Dec 2019 • Casimiro Pio Carrino, Marta R. Costa-jussà, José A. R. Fonollosa
We then used this dataset to train Spanish QA systems by fine-tuning a Multilingual-BERT model.
no code implementations • ACL 2019 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
Multilingual Neural Machine Translation approaches are based on the use of task-specific models and the addition of one more language can only be done by retraining the whole system.
2 code implementations • 16 May 2019 • José A. R. Fonollosa, Noe Casas, Marta R. Costa-jussà
The dominant neural machine translation models are based on the encoder-decoder structure, and many of them rely on an unconstrained receptive field over source and target sequences.
Ranked #10 on
Machine Translation
on WMT2014 English-French
no code implementations • 15 May 2019 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
By adding and forcing this interlingual loss, we are able to train multiple encoders and decoders for each language, sharing a common intermediate representation.
no code implementations • 15 Oct 2018 • Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
Preliminary results on the WMT 2017 Turkish/English task shows that the proposed architecture is capable of learning a universal language representation and simultaneously training both translation directions with state-of-the-art results.
1 code implementation • WS 2017 • Han Yang, Marta R. Costa-jussà, José A. R. Fonollosa
Natural language inference (NLI) is a central problem in language understanding.
no code implementations • 2 Mar 2016 • Marta R. Costa-jussà, José A. R. Fonollosa
Neural Machine Translation (MT) has reached state-of-the-art results.
no code implementations • 25 Jan 2016 • José A. R. Fonollosa
In this paper we derive variability measures for the conditional probability distributions of a pair of random variables, and we study its application in the inference of causal-effect relationships.