1 code implementation • 9 Jul 2024 • Sascha Caron, Nadezhda Dobreva, Antonio Ferrer Sánchez, José D. Martín-Guerrero, Uraz Odyurt, Roberto Ruiz de Austri Bazan, Zef Wolffs, Yue Zhao
We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments.
no code implementations • 27 May 2024 • Uraz Odyurt, Nadezhda Dobreva, Zef Wolffs, Yue Zhao, Antonio Ferrer Sánchez, Roberto Ruiz de Austri Bazan, José D. Martín-Guerrero, Ana-Lucia Varbanescu, Sascha Caron
This research sheds light on previously unexplored methods and provides valuable insights for the field of particle track reconstruction and hit clustering in HEP.
1 code implementation • 10 Sep 2023 • Carlos Hernani-Morales, Gabriel Alvarado, Francisco Albarrán-Arriagada, Yolanda Vives-Gilabert, Enrique Solano, José D. Martín-Guerrero
We propose machine learning (ML) methods to characterize the memristive properties of single and coupled quantum memristors.
no code implementations • 8 Sep 2023 • Antonio Ferrer-Sánchez, Carlos Flores-Garrigos, Carlos Hernani-Morales, José J. Orquín-Marqués, Narendra N. Hegade, Alejandro Gomez Cadavid, Iraitz Montalban, Enrique Solano, Yolanda Vives-Gilabert, José D. Martín-Guerrero
We introduce a novel methodology that leverages the strength of Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD) protocol in the optimization of quantum circuits comprised of systems with $N_{Q}$ qubits.
no code implementations • 8 Jul 2023 • Yongcheng Ding, José D. Martín-Guerrero, Yolanda Vives-Gilabert, Xi Chen
Active Learning (AL) is a family of machine learning (ML) algorithms that predates the current era of artificial intelligence.
1 code implementation • 23 Mar 2021 • Oscar J. Pellicer-Valero, José L. Marenco Jiménez, Victor Gonzalez-Perez, Juan Luis Casanova Ramón-Borja, Isabel Martín García, María Barrios Benito, Paula Pelechano Gómez, José Rubio-Briones, María José Rupérez, José D. Martín-Guerrero
The emergence of multi-parametric magnetic resonance imaging (mpMRI) has had a profound impact on the diagnosis of prostate cancers (PCa), which is the most prevalent malignancy in males in the western world, enabling a better selection of patients for confirmation biopsy.
1 code implementation • 11 Apr 2019 • Ana Martin, Bruno Candelas, Ángel Rodríguez-Rozas, José D. Martín-Guerrero, Xi Chen, Lucas Lamata, Román Orús, Enrique Solano, Mikel Sanz
Pricing interest-rate financial derivatives is a major problem in finance, in which it is crucial to accurately reproduce the time-evolution of interest rates.
Quantum Physics Mesoscale and Nanoscale Physics
1 code implementation • 7 Mar 2019 • Gorka Muñoz-Gil, Miguel Angel Garcia-March, Carlo Manzo, José D. Martín-Guerrero, Maciej Lewenstein
In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate even very short trajectories to the underlying diffusion mechanism with a high accuracy.
1 code implementation • 14 Feb 2019 • Raúl V. Casaña-Eslava, Paulo J. G. Lisboa, Sandra Ortega-Martorell, Ian H. Jarman, José D. Martín-Guerrero
However, it is very sensitive to a length parameter that is inherent to the Schr\"odinger equation.
no code implementations • 16 Dec 2016 • Unai Alvarez-Rodriguez, Lucas Lamata, Pablo Escandell-Montero, José D. Martín-Guerrero, Enrique Solano
We propose a quantum machine learning algorithm for efficiently solving a class of problems encoded in quantum controlled unitary operations.
no code implementations • 14 Sep 2015 • Pablo Escandell-Montero, Milena Chermisi, José M. Martínez-Martínez, Juan Gómez-Sanchis, Carlo Barbieri, Emilio Soria-Olivas, Flavio Mari, Joan Vila-Francés, Andrea Stopper, Emanuele Gatti, José D. Martín-Guerrero
Results: The experiments reported here are based on a computational model that describes the effect of ESAs on the hemoglobin level.