1 code implementation • 6 Mar 2025 • Hong Liu, Haosen Yang, Federica Eduati, Josien P. W. Pluim, Mitko Veta
Leveraging multimodal data, particularly the integration of whole-slide histology images (WSIs) and transcriptomic profiles, holds great promise for improving cancer survival prediction.
1 code implementation • 16 Jan 2025 • Tim J. M. Jaspers, Ronald L. P. D. de Jong, Yiping Li, Carolus H. J. Kusters, Franciscus H. A. Bakker, Romy C. van Jaarsveld, Gino M. Kuiper, Richard van Hillegersberg, Jelle P. Ruurda, Willem M. Brinkman, Josien P. W. Pluim, Peter H. N. de With, Marcel Breeuwer, Yasmina Al Khalil, Fons van der Sommen
Trained on the largest reported surgical dataset to date, comprising over 4. 7 million video frames, SurgeNetXL achieves consistent top-tier performance across six datasets spanning four surgical procedures and three tasks, including semantic segmentation, phase recognition, and critical view of safety (CVS) classification.
1 code implementation • 23 Dec 2024 • Evi M. C. Huijben, Sina Amirrajab, Josien P. W. Pluim
Out-of-distribution (OOD) detection is crucial for safely deploying automated medical image analysis systems, as abnormal patterns in images could hamper their performance.
1 code implementation • 26 Sep 2024 • Rob A. J. de Mooij, Josien P. W. Pluim, Cian M. Scannell
To this end, short-axis cine stacks of 296 subjects (90618 2D slices) were used for unlabeled pretraining with four SSP methods; SimCLR, positional contrastive learning, DINO, and masked image modeling (MIM).
no code implementations • 24 Jul 2024 • Ralf Raumanns, Gerard Schouten, Josien P. W. Pluim, Veronika Cheplygina
We evaluate the performance of skin lesion classification using ResNet-based CNNs, focusing on patient sex variations in training data and three different learning strategies.
1 code implementation • 14 Mar 2024 • Hong Liu, Haosen Yang, Paul J. van Diest, Josien P. W. Pluim, Mitko Veta
In particular, our model outperforms SAM by 4. 1 and 2. 5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task (CAMELYON16 dataset).
no code implementations • 12 Oct 2023 • Evi M. C. Huijben, Sina Amirrajab, Josien P. W. Pluim
Out-of-distribution (OOD) detection is crucial for the safety and reliability of artificial intelligence algorithms, especially in the medical domain.
Out-of-Distribution Detection
Out of Distribution (OOD) Detection
+1
1 code implementation • 26 Apr 2023 • Ishaan Bhat, Josien P. W. Pluim, Max A. Viergever, Hugo J. Kuijf
We propose the Generalized Probabilistic U-Net, which extends the Probabilistic U-Net by allowing more general forms of the Gaussian distribution as the latent space distribution that can better approximate the uncertainty in the reference segmentations.
no code implementations • 16 Jan 2023 • Yiping Jiao, Jeroen van der Laak, Shadi Albarqouni, Zhang Li, Tao Tan, Abhir Bhalerao, Jiabo Ma, Jiamei Sun, Johnathan Pocock, Josien P. W. Pluim, Navid Alemi Koohbanani, Raja Muhammad Saad Bashir, Shan E Ahmed Raza, Sibo Liu, Simon Graham, Suzanne Wetstein, Syed Ali Khurram, Thomas Watson, Nasir Rajpoot, Mitko Veta, Francesco Ciompi
Additionally, we present post-competition results where we show how the presented methods perform on an independent set of lung cancer slides, which was not part of the initial competition, as well as a comparison on lymphocyte assessment between presented methods and a panel of pathologists.
1 code implementation • 26 Jul 2022 • Ishaan Bhat, Josien P. W. Pluim, Hugo J. Kuijf
We propose the Generalized Probabilistic U-Net, which extends the Probabilistic U-Net by allowing more general forms of the Gaussian distribution as the latent space distribution that can better approximate the uncertainty in the reference segmentations.
1 code implementation • 22 Jun 2022 • Ishaan Bhat, Josien P. W. Pluim, Max A. Viergever, Hugo J. Kuijf
We study the role played by features computed from neural network uncertainty estimates and shape-based features computed from binary predictions in reducing false positives in liver lesion detection by developing a classification-based post-processing step for different uncertainty estimation methods.
1 code implementation • 27 Jul 2021 • Ralf Raumanns, Gerard Schouten, Max Joosten, Josien P. W. Pluim, Veronika Cheplygina
In this paper we first analyse the correlations between the annotations and the diagnostic label of the lesion, as well as study the agreement between different annotation sources.
1 code implementation • CVPR 2021 • Suprosanna Shit, Johannes C. Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien P. W. Pluim, Ulrich Bauer, Bjoern H. Menze
Accurate segmentation of tubular, network-like structures, such as vessels, neurons, or roads, is relevant to many fields of research.
no code implementations • 15 Feb 2021 • Friso G. Heslinga, Ruben T. Lucassen, Myrthe A. van den Berg, Luuk van der Hoek, Josien P. W. Pluim, Javier Cabrerizo, Mark Alberti, Mitko Veta
In this research, deep learning is used to automatically delineate the corneal interfaces and measure corneal thickness with high accuracy in post-DMEK AS-OCT B-scans.
no code implementations • 12 Jan 2021 • Ishaan Bhat, Hugo J. Kuijf, Veronika Cheplygina, Josien P. W. Pluim
We find that the use of a dropout rate of 0. 5 produces the least number of false positives in the neural network predictions and the trained classifier filters out approximately 90% of these false positives detections in the test-set.
no code implementations • 7 Oct 2020 • Suzanne C. Wetstein, Nikolas Stathonikos, Josien P. W. Pluim, Yujing J. Heng, Natalie D. ter Hoeve, Celien P. H. Vreuls, Paul J. van Diest, Mitko Veta
In conclusion, we developed a deep learning-based DCIS grading system that achieved a performance similar to expert observers.
no code implementations • 26 Aug 2020 • Maxime W. Lafarge, Josien P. W. Pluim, Mitko Veta
However, some generative factors that cause irrelevant variations in images can potentially get entangled in such a learned representation causing the risk of negatively affecting any subsequent use.
1 code implementation • 30 Jun 2020 • Linde S. Hesse, Pim A. de Jong, Josien P. W. Pluim, Veronika Cheplygina
Therefore, we propose a detection and classification system for lung nodules in CT scans.
1 code implementation • 11 Jun 2020 • Gerda Bortsova, Cristina González-Gonzalo, Suzanne C. Wetstein, Florian Dubost, Ioannis Katramados, Laurens Hogeweg, Bart Liefers, Bram van Ginneken, Josien P. W. Pluim, Mitko Veta, Clara I. Sánchez, Marleen de Bruijne
Firstly, we study the effect of weight initialization (ImageNet vs. random) on the transferability of adversarial attacks from the surrogate model to the target model.
no code implementations • 24 Apr 2020 • Friso G. Heslinga, Mark Alberti, Josien P. W. Pluim, Javier Cabrerizo, Mitko Veta
A second DMEK expert annotated the test set to determine inter-rater performance.
4 code implementations • 16 Mar 2020 • Suprosanna Shit, Johannes C. Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger, Andrey Zhylka, Josien P. W. Pluim, Ulrich Bauer, Bjoern H. Menze
Accurate segmentation of tubular, network-like structures, such as vessels, neurons, or roads, is relevant to many fields of research.
1 code implementation • 20 Feb 2020 • Maxime W. Lafarge, Erik J. Bekkers, Josien P. W. Pluim, Remco Duits, Mitko Veta
This study is focused on histopathology image analysis applications for which it is desirable that the arbitrary global orientation information of the imaged tissues is not captured by the machine learning models.
Ranked #5 on
Breast Tumour Classification
on PCam
no code implementations • 22 Nov 2019 • Friso G. Heslinga, Josien P. W. Pluim, A. J. H. M. Houben, Miranda T. Schram, Ronald M. A. Henry, Coen D. A. Stehouwer, Marleen J. van Greevenbroek, Tos T. J. M. Berendschot, Mitko Veta
We investigated three methods to achieve high classification performance, measured by the area under the receiver operating curve (ROC-AUC).
1 code implementation • 15 Oct 2019 • Mariëlle J. A. Jansen, Hugo J. Kuijf, Maarten Niekel, Wouter B. Veldhuis, Frank J. Wessels, Max A. Viergever, Josien P. W. Pluim
Primary tumors have a high likelihood of developing metastases in the liver and early detection of these metastases is crucial for patient outcome.
1 code implementation • 22 Aug 2019 • Mariëlle J. A. Jansen, Hugo J. Kuijf, Josien P. W. Pluim
In this study, the optimal input configuration of DCE MR images for convolutional neural networks (CNNs) is studied.
no code implementations • 22 Aug 2019 • Mariëlle J. A. Jansen, Wouter B. Veldhuis, Maarten S. van Leeuwen, Josien P. W. Pluim
Compared to a pairwise method or no registration, groupwise registration provided better alignment.
no code implementations • 22 Jul 2018 • Mitko Veta, Yujing J. Heng, Nikolas Stathonikos, Babak Ehteshami Bejnordi, Francisco Beca, Thomas Wollmann, Karl Rohr, Manan A. Shah, Dayong Wang, Mikael Rousson, Martin Hedlund, David Tellez, Francesco Ciompi, Erwan Zerhouni, David Lanyi, Matheus Viana, Vassili Kovalev, Vitali Liauchuk, Hady Ahmady Phoulady, Talha Qaiser, Simon Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck, Paul J. van Diest, Josien P. W. Pluim
The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of $\kappa$ = 0. 567, 95% CI [0. 464, 0. 671] between the predicted scores and the ground truth.
no code implementations • 21 Jun 2018 • Veronika Cheplygina, Josien P. W. Pluim
Classifiers for medical image analysis are often trained with a single consensus label, based on combining labels given by experts or crowds.
no code implementations • 17 Apr 2018 • Veronika Cheplygina, Marleen de Bruijne, Josien P. W. Pluim
Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging.
no code implementations • 10 Jan 2018 • Maxime W. Lafarge, Josien P. W. Pluim, Koen A. J. Eppenhof, Pim Moeskops, Mitko Veta
Histological images are obtained by transmitting light through a tissue specimen that has been stained in order to produce contrast.
no code implementations • 9 Aug 2017 • Pim Moeskops, Josien P. W. Pluim
Quantitative analysis of brain MRI at the age of 6 months is difficult because of the limited contrast between white matter and gray matter.
no code implementations • 19 Jul 2017 • Maxime W. Lafarge, Josien P. W. Pluim, Koen A. J. Eppenhof, Pim Moeskops, Mitko Veta
Preparing and scanning histopathology slides consists of several steps, each with a multitude of parameters.
no code implementations • 11 Jul 2017 • Pim Moeskops, Mitko Veta, Maxime W. Lafarge, Koen A. J. Eppenhof, Josien P. W. Pluim
To this end, we include an additional loss function that motivates the network to generate segmentations that are difficult to distinguish from manual segmentations.
no code implementations • 20 Jun 2016 • Mitko Veta, Paul J. van Diest, Josien P. W. Pluim
We hypothesize that given an image of a tumor region with known nuclei locations, the area of the individual nuclei and region statistics such as the MNA can be reliably computed directly from the image data by employing a machine learning model, without the intermediate step of nuclei segmentation.
no code implementations • 1 Mar 2016 • Korsuk Sirinukunwattana, Josien P. W. Pluim, Hao Chen, Xiaojuan Qi, Pheng-Ann Heng, Yun Bo Guo, Li Yang Wang, Bogdan J. Matuszewski, Elia Bruni, Urko Sanchez, Anton Böhm, Olaf Ronneberger, Bassem Ben Cheikh, Daniel Racoceanu, Philipp Kainz, Michael Pfeiffer, Martin Urschler, David R. J. Snead, Nasir M. Rajpoot
Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer.
no code implementations • 21 Nov 2014 • Mitko Veta, Paul J. van Diest, Stefan M. Willems, Haibo Wang, Anant Madabhushi, Angel Cruz-Roa, Fabio Gonzalez, Anders B. L. Larsen, Jacob S. Vestergaard, Anders B. Dahl, Dan C. Cireşan, Jürgen Schmidhuber, Alessandro Giusti, Luca M. Gambardella, F. Boray Tek, Thomas Walter, Ching-Wei Wang, Satoshi Kondo, Bogdan J. Matuszewski, Frederic Precioso, Violet Snell, Josef Kittler, Teofilo E. de Campos, Adnan M. Khan, Nasir M. Rajpoot, Evdokia Arkoumani, Miangela M. Lacle, Max A. Viergever, Josien P. W. Pluim
The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers.