Search Results for author: Juan Eugenio Iglesias

Found 55 papers, 26 papers with code

A Constrast-Agnostic Method for Ultra-High Resolution Claustrum Segmentation

1 code implementation23 Nov 2024 Chiara Mauri, Ryan Fritz, Jocelyn Mora, Benjamin Billot, Juan Eugenio Iglesias, Koen van Leemput, Jean Augustinack, Douglas N Greve

In this paper, we propose a contrast- and resolution-agnostic method for claustrum segmentation at ultra-high resolution (0. 35 mm isotropic); the method is based on the SynthSeg segmentation framework (Billot et al., 2023), which leverages the use of synthetic training intensity images to achieve excellent generalization.

Segmentation

Hierarchical Uncertainty Estimation for Learning-based Registration in Neuroimaging

1 code implementation11 Oct 2024 Xiaoling Hu, Karthik Gopinath, Peirong Liu, Malte Hoffmann, Koen van Leemput, Oula Puonti, Juan Eugenio Iglesias

Here, we propose a principled way to propagate uncertainties (epistemic or aleatoric) estimated at the level of spatial location by these methods, to the level of global transformation models, and further to downstream tasks.

Image Registration

TV-based Deep 3D Self Super-Resolution for fMRI

no code implementations5 Oct 2024 Fernando Pérez-Bueno, Hongwei Bran Li, Matthew S. Rosen, Shahin Nasr, Cesar Caballero-Gaudes, Juan Eugenio Iglesias

While functional Magnetic Resonance Imaging (fMRI) offers valuable insights into cognitive processes, its inherent spatial limitations pose challenges for detailed analysis of the fine-grained functional architecture of the brain.

Super-Resolution

Recon-all-clinical: Cortical surface reconstruction and analysis of heterogeneous clinical brain MRI

no code implementations5 Sep 2024 Karthik Gopinath, Douglas N. Greve, Colin Magdamo, Steve Arnold, Sudeshna Das, Oula Puonti, Juan Eugenio Iglesias

To enable large-scale neuroimaging studies using vast clinical data, we introduce recon-all-clinical, a novel method for cortical reconstruction, registration, parcellation, and thickness estimation in brain MRI scans of any resolution and contrast.

All Surface Reconstruction

BraTS-PEDs: Results of the Multi-Consortium International Pediatric Brain Tumor Segmentation Challenge 2023

no code implementations11 Jul 2024 Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan Haldar, Zhifan Jiang, Anna Zapaishchykova, Julija Pavaine, Lubdha M. Shah, Blaise V. Jones, Nakul Sheth, Sanjay P. Prabhu, Aaron S. McAllister, Wenxin Tu, Khanak K. Nandolia, Andres F. Rodriguez, Ibraheem Salman Shaikh, Mariana Sanchez Montano, Hollie Anne Lai, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Hannah Anderson, Syed Muhammed Anwar, Alejandro Aristizabal, Sina Bagheri, Ujjwal Baid, Timothy Bergquist, Austin J. Borja, Evan Calabrese, Verena Chung, Gian-Marco Conte, James Eddy, Ivan Ezhov, Ariana M. Familiar, Keyvan Farahani, Deep Gandhi, Anurag Gottipati, Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Elaine, Alexandros Karargyris, Hasan Kassem, Neda Khalili, Florian Kofler, Dominic LaBella, Koen van Leemput, Hongwei B. Li, Nazanin Maleki, Zeke Meier, Bjoern Menze, Ahmed W. Moawad, Sarthak Pati, Marie Piraud, Tina Poussaint, Zachary J. Reitman, Jeffrey D. Rudie, Rachit Saluja, Micah Sheller, Russell Takeshi Shinohara, Karthik Viswanathan, Chunhao Wang, Benedikt Wiestler, Walter F. Wiggins, Christos Davatzikos, Phillip B. Storm, Miriam Bornhorst, Roger Packer, Trent Hummel, Peter de Blank, Lindsey Hoffman, Mariam Aboian, Ali Nabavizadeh, Jeffrey B. Ware, Benjamin H. Kann, Brian Rood, Adam Resnick, Spyridon Bakas, Arastoo Vossough, Marius George Linguraru

Pediatric central nervous system tumors are the leading cause of cancer-related deaths in children.

Brain Tumor Segmentation Tumor Segmentation

High-resolution segmentations of the hypothalamus and its subregions for training of segmentation models

1 code implementation27 Jun 2024 Livia Rodrigues, Martina Bocchetta, Oula Puonti, Douglas Greve, Ana Carolina Londe, Marcondes França, Simone Appenzeller, Leticia Rittner, Juan Eugenio Iglesias

Here we provide HELM, Hypothalamic ex vivo Label Maps, a dataset composed of label maps built from publicly available ultra-high resolution ex vivo MRI from 10 whole hemispheres, which can be used to develop segmentation methods using synthetic data.

Segmentation

Probabilistic Contrastive Learning with Explicit Concentration on the Hypersphere

no code implementations26 May 2024 Hongwei Bran Li, Cheng Ouyang, Tamaz Amiranashvili, Matthew S. Rosen, Bjoern Menze, Juan Eugenio Iglesias

Self-supervised contrastive learning has predominantly adopted deterministic methods, which are not suited for environments characterized by uncertainty and noise.

Contrastive Learning Out-of-Distribution Detection

Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge

no code implementations16 May 2024 Dominic LaBella, Ujjwal Baid, Omaditya Khanna, Shan McBurney-Lin, Ryan McLean, Pierre Nedelec, Arif Rashid, Nourel Hoda Tahon, Talissa Altes, Radhika Bhalerao, Yaseen Dhemesh, Devon Godfrey, Fathi Hilal, Scott Floyd, Anastasia Janas, Anahita Fathi Kazerooni, John Kirkpatrick, Collin Kent, Florian Kofler, Kevin Leu, Nazanin Maleki, Bjoern Menze, Maxence Pajot, Zachary J. Reitman, Jeffrey D. Rudie, Rachit Saluja, Yury Velichko, Chunhao Wang, Pranav Warman, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Syed Muhammad Anwar, Timothy Bergquist, Sully Francis Chen, Verena Chung, Rong Chai, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Nastaran Khalili, Juan Eugenio Iglesias, Zhifan Jiang, Elaine Johanson, Koen van Leemput, Hongwei Bran Li, Marius George Linguraru, Xinyang Liu, Aria Mahtabfar, Zeke Meier, Ahmed W. Moawad, John Mongan, Marie Piraud, Russell Takeshi Shinohara, Walter F. Wiggins, Aly H. Abayazeed, Rachel Akinola, András Jakab, Michel Bilello, Maria Correia de Verdier, Priscila Crivellaro, Christos Davatzikos, Keyvan Farahani, John Freymann, Christopher Hess, Raymond Huang, Philipp Lohmann, Mana Moassefi, Matthew W. Pease, Phillipp Vollmuth, Nico Sollmann, David Diffley, Khanak K. Nandolia, Daniel I. Warren, Ali Hussain, Pascal Fehringer, Yulia Bronstein, Lisa Deptula, Evan G. Stein, Mahsa Taherzadeh, Eduardo Portela de Oliveira, Aoife Haughey, Marinos Kontzialis, Luca Saba, Benjamin Turner, Melanie M. T. Brüßeler, Shehbaz Ansari, Athanasios Gkampenis, David Maximilian Weiss, Aya Mansour, Islam H. Shawali, Nikolay Yordanov, Joel M. Stein, Roula Hourani, Mohammed Yahya Moshebah, Ahmed Magdy Abouelatta, Tanvir Rizvi, Klara Willms, Dann C. Martin, Abdullah Okar, Gennaro D'Anna, Ahmed Taha, Yasaman Sharifi, Shahriar Faghani, Dominic Kite, Marco Pinho, Muhammad Ammar Haider, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Michelle Alonso-Basanta, Javier Villanueva-Meyer, Andreas M. Rauschecker, Ayman Nada, Mariam Aboian, Adam E. Flanders, Benedikt Wiestler, Spyridon Bakas, Evan Calabrese

The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0. 976, 0. 976, and 0. 964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0. 899, 0. 904, and 0. 871, respectively.

Face Anonymization Segmentation

Registration by Regression (RbR): a framework for interpretable and flexible atlas registration

no code implementations25 Apr 2024 Karthik Gopinath, Xiaoling Hu, Malte Hoffmann, Oula Puonti, Juan Eugenio Iglesias

In human neuroimaging studies, atlas registration enables mapping MRI scans to a common coordinate frame, which is necessary to aggregate data from multiple subjects.

regression

JUMP: A joint multimodal registration pipeline for neuroimaging with minimal preprocessing

1 code implementation25 Jan 2024 Adria Casamitjana, Juan Eugenio Iglesias, Raul Tudela, Aida Ninerola-Baizan, Roser Sala-Llonch

We present a pipeline for unbiased and robust multimodal registration of neuroimaging modalities with minimal pre-processing.

Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI

1 code implementation CVPR 2024 Sean I. Young, Yaël Balbastre, Bruce Fischl, Polina Golland, Juan Eugenio Iglesias

Here, we propose a SVR method that overcomes the shortcomings of previous work and produces state-of-the-art reconstructions in the presence of extreme inter-slice motion.

3D Reconstruction Depth Estimation +1

USLR: an open-source tool for unbiased and smooth longitudinal registration of brain MR

1 code implementation14 Nov 2023 Adrià Casamitjana, Roser Sala-Llonch, Karim Lekadir, Juan Eugenio Iglesias

We present USLR, a computational framework for longitudinal registration of brain MRI scans to estimate nonlinear image trajectories that are smooth across time, unbiased to any timepoint, and robust to imaging artefacts.

Bayesian Inference Image Segmentation +2

Robust and Generalisable Segmentation of Subtle Epilepsy-causing Lesions: a Graph Convolutional Approach

1 code implementation2 Jun 2023 Hannah Spitzer, Mathilde Ripart, Abdulah Fawaz, Logan Z. J. Williams, MELD project, Emma Robinson, Juan Eugenio Iglesias, Sophie Adler, Konrad Wagstyl

On a multi-centre dataset of 1015 participants with surface-based features and manual lesion masks from structural MRI data, the proposed GCN achieved an AUC of 0. 74, a significant improvement against a previously used vertex-wise multi-layer perceptron (MLP) classifier (AUC 0. 64).

Lesion Detection Semantic Segmentation +1

The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI

no code implementations1 Jun 2023 Ahmed W. Moawad, Anastasia Janas, Ujjwal Baid, Divya Ramakrishnan, Rachit Saluja, Nader Ashraf, Nazanin Maleki, Leon Jekel, Nikolay Yordanov, Pascal Fehringer, Athanasios Gkampenis, Raisa Amiruddin, Amirreza Manteghinejad, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Sanjay Aneja, Syed Muhammad Anwar, Timothy Bergquist, Veronica Chiang, Verena Chung, Gian Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Nastaran Khalili, Keyvan Farahani, Juan Eugenio Iglesias, Zhifan Jiang, Elaine Johanson, Anahita Fathi Kazerooni, Florian Kofler, Kiril Krantchev, Dominic LaBella, Koen van Leemput, Hongwei Bran Li, Marius George Linguraru, Xinyang Liu, Zeke Meier, Bjoern H Menze, Harrison Moy, Klara Osenberg, Marie Piraud, Zachary Reitman, Russell Takeshi Shinohara, Chunhao Wang, Benedikt Wiestler, Walter Wiggins, Umber Shafique, Klara Willms, Arman Avesta, Khaled Bousabarah, Satrajit Chakrabarty, Nicolo Gennaro, Wolfgang Holler, Manpreet Kaur, Pamela Lamontagne, MingDe Lin, Jan Lost, Daniel S. Marcus, Ryan Maresca, Sarah Merkaj, Gabriel Cassinelli Pedersen, Marc von Reppert, Aristeidis Sotiras, Oleg Teytelboym, Niklas Tillmans, Malte Westerhoff, Ayda Youssef, Devon Godfrey, Scott Floyd, Andreas Rauschecker, Javier Villanueva-Meyer, Irada Pfluger, Jaeyoung Cho, Martin Bendszus, Gianluca Brugnara, Justin Cramer, Gloria J. Guzman Perez-Carillo, Derek R. Johnson, Anthony Kam, Benjamin Yin Ming Kwan, Lillian Lai, Neil U. Lall, Fatima Memon, Mark Krycia, Satya Narayana Patro, Bojan Petrovic, Tiffany Y. So, Gerard Thompson, Lei Wu, E. Brooke Schrickel, Anu Bansal, Frederik Barkhof, Cristina Besada, Sammy Chu, Jason Druzgal, Alexandru Dusoi, Luciano Farage, Fabricio Feltrin, Amy Fong, Steve H. Fung, R. Ian Gray, Ichiro Ikuta, Michael Iv, Alida A. Postma, Amit Mahajan, David Joyner, Chase Krumpelman, Laurent Letourneau-Guillon, Christie M. Lincoln, Mate E. Maros, Elka Miller, Fanny Moron, Esther A. Nimchinsky, Ozkan Ozsarlak, Uresh Patel, Saurabh Rohatgi, Atin Saha, Anousheh Sayah, Eric D. Schwartz, Robert Shih, Mark S. Shiroishi, Juan E. Small, Manoj Tanwar, Jewels Valerie, Brent D. Weinberg, Matthew L. White, Robert Young, Vahe M. Zohrabian, Aynur Azizova, Melanie Maria Theresa Bruseler, Mohanad Ghonim, Mohamed Ghonim, Abdullah Okar, Luca Pasquini, Yasaman Sharifi, Gagandeep Singh, Nico Sollmann, Theodora Soumala, Mahsa Taherzadeh, Philipp Vollmuth, Martha Foltyn-Dumitru, Ajay Malhotra, Aly H. Abayazeed, Francesco Dellepiane, Philipp Lohmann, Victor M. Perez-Garcia, Hesham Elhalawani, Maria Correia de Verdier, Sanaria Al-Rubaiey, Rui Duarte Armindo, Kholod Ashraf, Moamen M. Asla, Mohamed Badawy, Jeroen Bisschop, Nima Broomand Lomer, Jan Bukatz, Jim Chen, Petra Cimflova, Felix Corr, Alexis Crawley, Lisa Deptula, Tasneem Elakhdar, Islam H. Shawali, Shahriar Faghani, Alexandra Frick, Vaibhav Gulati, Muhammad Ammar Haider, Fatima Hierro, Rasmus Holmboe Dahl, Sarah Maria Jacobs, Kuang-chun Jim Hsieh, Sedat G. Kandemirli, Katharina Kersting, Laura Kida, Sofia Kollia, Ioannis Koukoulithras, Xiao Li, Ahmed Abouelatta, Aya Mansour, Ruxandra-Catrinel Maria-Zamfirescu, Marcela Marsiglia, Yohana Sarahi Mateo-Camacho, Mark McArthur, Olivia McDonnell, Maire McHugh, Mana Moassefi, Samah Mostafa Morsi, Alexander Munteanu, Khanak K. Nandolia, Syed Raza Naqvi, Yalda Nikanpour, Mostafa Alnoury, Abdullah Mohamed Aly Nouh, Francesca Pappafava, Markand D. Patel, Samantha Petrucci, Eric Rawie, Scott Raymond, Borna Roohani, Sadeq Sabouhi, Laura M. Sanchez-Garcia, Zoe Shaked, Pokhraj P. Suthar, Talissa Altes, Edvin Isufi, Yaseen Dhemesh, Jaime Gass, Jonathan Thacker, Abdul Rahman Tarabishy, Benjamin Turner, Sebastiano Vacca, George K. Vilanilam, Daniel Warren, David Weiss, Fikadu Worede, Sara Yousry, Wondwossen Lerebo, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Katherine E. Link, Evan Calabrese, Nourel Hoda Tahon, Ayman Nada, Yuri S. Velichko, Spyridon Bakas, Jeffrey D. Rudie, Mariam Aboian

Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing.

Benchmarking Brain Tumor Segmentation +4

The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)

1 code implementation26 May 2023 Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan Haldar, Zhifan Jiang, Syed Muhammed Anwar, Jake Albrecht, Maruf Adewole, Udunna Anazodo, Hannah Anderson, Sina Bagheri, Ujjwal Baid, Timothy Bergquist, Austin J. Borja, Evan Calabrese, Verena Chung, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Ariana Familiar, Keyvan Farahani, Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Johansen, Blaise V Jones, Florian Kofler, Dominic LaBella, Hollie Anne Lai, Koen van Leemput, Hongwei Bran Li, Nazanin Maleki, Aaron S McAllister, Zeke Meier, Bjoern Menze, Ahmed W Moawad, Khanak K Nandolia, Julija Pavaine, Marie Piraud, Tina Poussaint, Sanjay P Prabhu, Zachary Reitman, Andres Rodriguez, Jeffrey D Rudie, Mariana Sanchez-Montano, Ibraheem Salman Shaikh, Lubdha M. Shah, Nakul Sheth, Russel Taki Shinohara, Wenxin Tu, Karthik Viswanathan, Chunhao Wang, Jeffrey B Ware, Benedikt Wiestler, Walter Wiggins, Anna Zapaishchykova, Mariam Aboian, Miriam Bornhorst, Peter de Blank, Michelle Deutsch, Maryam Fouladi, Lindsey Hoffman, Benjamin Kann, Margot Lazow, Leonie Mikael, Ali Nabavizadeh, Roger Packer, Adam Resnick, Brian Rood, Arastoo Vossough, Spyridon Bakas, Marius George Linguraru

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children.

Benchmarking Brain Tumor Segmentation +2

The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting

1 code implementation15 May 2023 Florian Kofler, Felix Meissen, Felix Steinbauer, Robert Graf, Stefan K Ehrlich, Annika Reinke, Eva Oswald, Diana Waldmannstetter, Florian Hoelzl, Izabela Horvath, Oezguen Turgut, Suprosanna Shit, Christina Bukas, Kaiyuan Yang, Johannes C. Paetzold, Ezequiel de da Rosa, Isra Mekki, Shankeeth Vinayahalingam, Hasan Kassem, Juexin Zhang, Ke Chen, Ying Weng, Alicia Durrer, Philippe C. Cattin, Julia Wolleb, M. S. Sadique, M. M. Rahman, W. Farzana, A. Temtam, K. M. Iftekharuddin, Maruf Adewole, Syed Muhammad Anwar, Ujjwal Baid, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Hongwei Bran Li, Ahmed W Moawad, Gian-Marco Conte, Keyvan Farahani, James Eddy, Micah Sheller, Sarthak Pati, Alexandros Karagyris, Alejandro Aristizabal, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Elaine Johanson, Zeke Meier, Ariana Familiar, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, Errol Colak, Priscila Crivellaro, Andras Jakab, Abiodun Fatade, Olubukola Omidiji, Rachel Akinola Lagos, O O Olatunji, Goldey Khanna, John Kirkpatrick, Michelle Alonso-Basanta, Arif Rashid, Miriam Bornhorst, Ali Nabavizadeh, Natasha Lepore, Joshua Palmer, Antonio Porras, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Evan Calabrese, Jeffrey David Rudie, Marius George Linguraru, Juan Eugenio Iglesias, Koen van Leemput, Spyridon Bakas, Benedikt Wiestler, Ivan Ezhov, Marie Piraud, Bjoern H Menze

The challenge is organized as part of the ASNR-BraTS MICCAI challenge.

Anatomy Brain Tumor Segmentation +3

Domain-agnostic segmentation of thalamic nuclei from joint structural and diffusion MRI

no code implementations5 May 2023 Henry F. J. Tregidgo, Sonja Soskic, Mark D. Olchanyi, Juri Althonayan, Benjamin Billot, Chiara Maffei, Polina Golland, Anastasia Yendiki, Daniel C. Alexander, Martina Bocchetta, Jonathan D. Rohrer, Juan Eugenio Iglesias

Some tools have attempted to incorporate information from diffusion MRI in the segmentation to refine these boundaries, but do not generalise well across diffusion MRI acquisitions.

Segmentation

Cortical analysis of heterogeneous clinical brain MRI scans for large-scale neuroimaging studies

no code implementations2 May 2023 Karthik Gopinath, Douglas N. Greve, Sudeshna Das, Steve Arnold, Colin Magdamo, Juan Eugenio Iglesias

Here we present the first method for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and pulse sequence.

3D Reconstruction

A Domain-specific Perceptual Metric via Contrastive Self-supervised Representation: Applications on Natural and Medical Images

no code implementations3 Dec 2022 Hongwei Bran Li, Chinmay Prabhakar, Suprosanna Shit, Johannes Paetzold, Tamaz Amiranashvili, JianGuo Zhang, Daniel Rueckert, Juan Eugenio Iglesias, Benedikt Wiestler, Bjoern Menze

We find that in the natural image domain, CSR behaves on par with the supervised one on several perceptual tests as a metric, and in the medical domain, CSR better quantifies perceptual similarity concerning the experts' ratings.

Image Generation

SVoRT: Iterative Transformer for Slice-to-Volume Registration in Fetal Brain MRI

1 code implementation22 Jun 2022 Junshen Xu, Daniel Moyer, P. Ellen Grant, Polina Golland, Juan Eugenio Iglesias, Elfar Adalsteinsson

Experiments with real-world MRI data are also performed to demonstrate the ability of the proposed model to improve the quality of 3D reconstruction under severe fetal motion.

3D Reconstruction

SuperWarp: Supervised Learning and Warping on U-Net for Invariant Subvoxel-Precise Registration

no code implementations15 May 2022 Sean I. Young, Yaël Balbastre, Adrian V. Dalca, William M. Wells, Juan Eugenio Iglesias, Bruce Fischl

In recent years, learning-based image registration methods have gradually moved away from direct supervision with target warps to instead use self-supervision, with excellent results in several registration benchmarks.

Image Registration

Accurate super-resolution low-field brain MRI

no code implementations7 Feb 2022 Juan Eugenio Iglesias, Riana Schleicher, Sonia Laguna, Benjamin Billot, Pamela Schaefer, Brenna McKaig, Joshua N. Goldstein, Kevin N. Sheth, Matthew S. Rosen, W. Taylor Kimberly

To address this challenge, recent advances in machine learning facilitate the synthesis of higher resolution images derived from one or multiple lower resolution scans.

Diagnostic Image Enhancement +1

Supervision by Denoising for Medical Image Segmentation

no code implementations7 Feb 2022 Sean I. Young, Adrian V. Dalca, Enzo Ferrante, Polina Golland, Christopher A. Metzler, Bruce Fischl, Juan Eugenio Iglesias

SUD unifies stochastic averaging and spatial denoising techniques under a spatio-temporal denoising framework and alternates denoising and model weight update steps in an optimization framework for semi-supervision.

Denoising Image Reconstruction +3

The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients

no code implementations13 Dec 2021 Bhakti Baheti, Satrajit Chakrabarty, Hamed Akbari, Michel Bilello, Benedikt Wiestler, Julian Schwarting, Evan Calabrese, Jeffrey Rudie, Syed Abidi, Mina Mousa, Javier Villanueva-Meyer, Brandon K. K. Fields, Florian Kofler, Russell Takeshi Shinohara, Juan Eugenio Iglesias, Tony C. W. Mok, Albert C. S. Chung, Marek Wodzinski, Artur Jurgas, Niccolo Marini, Manfredo Atzori, Henning Muller, Christoph Grobroehmer, Hanna Siebert, Lasse Hansen, Mattias P. Heinrich, Luca Canalini, Jan Klein, Annika Gerken, Stefan Heldmann, Alessa Hering, Horst K. Hahn, Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim, Ramy A. Zeineldin, Mohamed E. Karar, Franziska Mathis-Ullrich, Oliver Burgert, Javid Abderezaei, Aymeric Pionteck, Agamdeep Chopra, Mehmet Kurt, Kewei Yan, Yonghong Yan, Zhe Tang, Jianqiang Ma, Sahar Almahfouz Nasser, Nikhil Cherian Kurian, Mohit Meena, Saqib Shamsi, Amit Sethi, Nicholas J. Tustison, Brian B. Avants, Philip Cook, James C. Gee, Lin Tian, Hastings Greer, Marc Niethammer, Andrew Hoopes, Malte Hoffmann, Adrian V. Dalca, Stergios Christodoulidis, Theo Estiene, Maria Vakalopoulou, Nikos Paragios, Daniel S. Marcus, Christos Davatzikos, Aristeidis Sotiras, Bjoern Menze, Spyridon Bakas, Diana Waldmannstetter

Registration of longitudinal brain MRI scans containing pathologies is challenging due to dramatic changes in tissue appearance.

Descriptive Image Registration +1

Synth-by-Reg (SbR): Contrastive learning for synthesis-based registration of paired images

1 code implementation30 Jul 2021 Adrià Casamitjana, Matteo Mancini, Juan Eugenio Iglesias

Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment.

Contrastive Learning Translation

Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas

1 code implementation30 Apr 2021 Adrià Casamitjana, Marco Lorenzi, Sebastiano Ferraris, Loc Peter, Marc Modat, Allison Stevens, Bruce Fischl, Tom Vercauteren, Juan Eugenio Iglesias

The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images.

3D Reconstruction Bayesian Inference

Active Annotation of Informative Overlapping Frames in Video Mosaicking Applications

1 code implementation30 Dec 2020 Loic Peter, Marcel Tella-Amo, Dzhoshkun Ismail Shakir, Jan Deprest, Sebastien Ourselin, Juan Eugenio Iglesias, Tom Vercauteren

In addition to the efficient construction of a mosaic, our framework provides, as a by-product, ground truth landmark correspondences which can be used for evaluation or learning purposes.

Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast

1 code implementation24 Dec 2020 Juan Eugenio Iglesias, Benjamin Billot, Yael Balbastre, Azadeh Tabari, John Conklin, Daniel C. Alexander, Polina Golland, Brian L. Edlow, Bruce Fischl

Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well - typically requiring T1 scans (e. g., MP-RAGE).

Image Registration Skull Stripping +1

Joint Frequency and Image Space Learning for MRI Reconstruction and Analysis

1 code implementation2 Jul 2020 Nalini M. Singh, Juan Eugenio Iglesias, Elfar Adalsteinsson, Adrian V. Dalca, Polina Golland

This is in contrast to most current deep learning approaches for image reconstruction that treat frequency and image space features separately and often operate exclusively in one of the two spaces.

Image Denoising MRI Reconstruction

An Auto-Encoder Strategy for Adaptive Image Segmentation

1 code implementation MIDL 2019 Evan M. Yu, Juan Eugenio Iglesias, Adrian V. Dalca, Mert R. Sabuncu

Thus there is a strong need for deep learning-based segmentation tools that do not require heavy supervision and can continuously adapt.

Image Segmentation Representation Learning +2

Partial Volume Segmentation of Brain MRI Scans of any Resolution and Contrast

2 code implementations21 Apr 2020 Benjamin Billot, Eleanor D. Robinson, Adrian V. Dalca, Juan Eugenio Iglesias

Partial voluming (PV) is arguably the last crucial unsolved problem in Bayesian segmentation of brain MRI with probabilistic atlases.

A Learning Strategy for Contrast-agnostic MRI Segmentation

3 code implementations MIDL 2019 Benjamin Billot, Douglas Greve, Koen van Leemput, Bruce Fischl, Juan Eugenio Iglesias, Adrian V. Dalca

These samples are produced using the generative model of the classical Bayesian segmentation framework, with randomly sampled parameters for appearance, deformation, noise, and bias field.

Brain Segmentation MRI segmentation +2

Unsupervised Deep Learning for Bayesian Brain MRI Segmentation

1 code implementation25 Apr 2019 Adrian V. Dalca, Evan Yu, Polina Golland, Bruce Fischl, Mert R. Sabuncu, Juan Eugenio Iglesias

To develop a deep learning-based segmentation model for a new image dataset (e. g., of different contrast), one usually needs to create a new labeled training dataset, which can be prohibitively expensive, or rely on suboptimal ad hoc adaptation or augmentation approaches.

Brain Image Segmentation Brain Segmentation +6

Large-scale mammography CAD with Deformable Conv-Nets

no code implementations19 Feb 2019 Stephen Morrell, Zbigniew Wojna, Can Son Khoo, Sebastien Ourselin, Juan Eugenio Iglesias

State-of-the-art deep learning methods for image processing are evolving into increasingly complex meta-architectures with a growing number of modules.

A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology

no code implementations22 Jun 2018 Juan Eugenio Iglesias, Ricardo Insausti, Garikoitz Lerma-Usabiaga, Martina Bocchetta, Koen van Leemput, Douglas N. Greve, Andre van der Kouwe, Bruce Fischl, Cesar Caballero-Gaudes, Pedro M Paz-Alonso

In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation.

Bayesian Inference Hippocampus +2

Joint registration and synthesis using a probabilistic model for alignment of MRI and histological sections

no code implementations16 Jan 2018 Juan Eugenio Iglesias, Marc Modat, Loic Peter, Allison Stevens, Roberto Annunziata, Tom Vercauteren, Ed Lein, Bruce Fischl, Sebastien Ourselin

Here, we overcome this limitation with a probabilistic method that simultaneously solves for registration and synthesis directly on the target images, without any training data.

Bayesian Inference

Part-to-whole Registration of Histology and MRI using Shape Elements

no code implementations27 Aug 2017 Jonas Pichat, Juan Eugenio Iglesias, Sotiris Nousias, Tarek Yousry, Sebastien Ourselin, Marc Modat

We propose here a novel automatic approach to the joint problem of multimodal registration between histology and MRI, when only a fraction of tissue is available from histology.

Image Registration

Multi-Atlas Segmentation of Biomedical Images: A Survey

no code implementations10 Dec 2014 Juan Eugenio Iglesias, Mert Rory Sabuncu

Finally, our goal is to also present a perspective on the future of MAS, which, we believe, will be one of the dominant approaches in biomedical image segmentation.

Image Segmentation Segmentation +2

Cannot find the paper you are looking for? You can Submit a new open access paper.