Search Results for author: Juan Gomez-Luna

Found 4 papers, 3 papers with code

EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network Accelerators

no code implementations4 Feb 2022 Lois Orosa, Skanda Koppula, Yaman Umuroglu, Konstantinos Kanellopoulos, Juan Gomez-Luna, Michaela Blott, Kees Vissers, Onur Mutlu

We find that commonly-used low-power CNN inference accelerators based on spatial architectures are not optimized for both of these convolutional kernels.

Image Generation Image Segmentation +1

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

2 code implementations16 Sep 2020 Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Unfortunately, it is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems, as many of the steps in genome sequence analysis must process a large amount of data.

Hardware Architecture Genomics

SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs

1 code implementation20 Oct 2019 Mohammed Alser, Taha Shahroodi, Juan Gomez-Luna, Can Alkan, Onur Mutlu

The key idea of SneakySnake is to reduce the approximate string matching (ASM) problem to the single net routing (SNR) problem in VLSI chip layout.

Cannot find the paper you are looking for? You can Submit a new open access paper.