no code implementations • MSR (COLING) 2020 • Gábor Recski, Ádám Kovács, Kinga Gémes, Judit Ács, Andras Kornai
We present a system for mapping Universal Dependency structures to raw text which learns to restore word order by training an Interpreted Regular Tree Grammar (IRTG) that establishes a mapping between string and graph operations.
no code implementations • ACL (SIGMORPHON) 2021 • Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke, Shijie Wu, Eleanor Chodroff, Brian Leonard, Garrett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa, Nizar Habash, Charbel El-Khaissi, Omer Goldman, Michael Gasser, William Lane, Matt Coler, Arturo Oncevay, Jaime Rafael Montoya Samame, Gema Celeste Silva Villegas, Adam Ek, Jean-Philippe Bernardy, Andrey Shcherbakov, Aziyana Bayyr-ool, Karina Sheifer, Sofya Ganieva, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Andrew Krizhanovsky, Natalia Krizhanovsky, Clara Vania, Sardana Ivanova, Aelita Salchak, Christopher Straughn, Zoey Liu, Jonathan North Washington, Duygu Ataman, Witold Kieraś, Marcin Woliński, Totok Suhardijanto, Niklas Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Richard J. Hatcher, Emily Prud'hommeaux, Ritesh Kumar, Mans Hulden, Botond Barta, Dorina Lakatos, Gábor Szolnok, Judit Ács, Mohit Raj, David Yarowsky, Ryan Cotterell, Ben Ambridge, Ekaterina Vylomova
This year's iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features.
no code implementations • ACL (SIGMORPHON) 2021 • Gábor Szolnok, Botond Barta, Dorina Lakatos, Judit Ács
We present the BME submission for the SIGMORPHON 2021 Task 0 Part 1, Generalization Across Typologically Diverse Languages shared task.
1 code implementation • 4 Apr 2024 • Botond Barta, Dorina Lakatos, Attila Nagy, Milán Konor Nyist, Judit Ács
To address this gap our paper introduces HunSum-2 an open-source Hungarian corpus suitable for training abstractive and extractive summarization models.
1 code implementation • 4 Nov 2023 • Attila Nagy, Dorina Lakatos, Botond Barta, Judit Ács
Data augmentation methods for neural machine translation are particularly useful when limited amount of training data is available, which is often the case when dealing with low-resource languages.
2 code implementations • 13 Jul 2023 • Attila Nagy, Dorina Petra Lakatos, Botond Barta, Patrick Nanys, Judit Ács
We present a generic framework for data augmentation via dependency subtree swapping that is applicable to machine translation.
1 code implementation • 1 Feb 2023 • Botond Barta, Dorina Lakatos, Attila Nagy, Milán Konor Nyist, Judit Ács
We introduce HunSum-1: a dataset for Hungarian abstractive summarization, consisting of 1. 14M news articles.
2 code implementations • 18 Jan 2022 • Attila Nagy, Patrick Nanys, Balázs Frey Konrád, Bence Bial, Judit Ács
We train Transformer-based neural machine translation models for Hungarian-English and English-Hungarian using the Hunglish2 corpus.
1 code implementation • ACL (IWCLUL) 2021 • Judit Ács, Dániel Lévai, András Kornai
Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of well-resourced languages.
1 code implementation • 22 Feb 2021 • Judit Ács, Ákos Kádár, András Kornai
For POS tagging both of these strategies perform poorly and the best choice is to use a small LSTM over the subwords.
1 code implementation • 22 Feb 2021 • Judit Ács, Dániel Lévai, Dávid Márk Nemeskey, András Kornai
We present an extended comparison of contextualized language models for Hungarian.
1 code implementation • 18 Jan 2021 • Attila Nagy, Bence Bial, Judit Ács
We present an approach for automatic punctuation restoration with BERT models for English and Hungarian.