no code implementations • 1 Jun 2023 • Julius von Kügelgen, Michel Besserve, Wendong Liang, Luigi Gresele, Armin Kekić, Elias Bareinboim, David M. Blei, Bernhard Schölkopf
We study the fundamental setting of two causal variables and prove that the observational distribution and one perfect intervention per node suffice for identifiability, subject to a genericity condition.
no code implementations • 26 May 2023 • Wendong Liang, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gresele, Bernhard Schölkopf
As a corollary, this interventional perspective also leads to new identifiability results for nonlinear ICA -- a special case of CauCA with an empty graph -- requiring strictly fewer datasets than previous results.
no code implementations • 23 May 2023 • Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius von Kügelgen, Wieland Brendel
Under this generative process, we prove that the ground-truth object representations can be identified by an invertible and compositional inference model, even in the presence of dependencies between objects.
1 code implementation • 14 Dec 2022 • Armin Kekić, Jonas Dehning, Luigi Gresele, Julius von Kügelgen, Viola Priesemann, Bernhard Schölkopf
Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups.
no code implementations • 1 Nov 2022 • Julius von Kügelgen, Abdirisak Mohamed, Sander Beckers
In Pearl's structural causal model (SCM) framework this is made mathematically rigorous via interventions that modify the causal laws while the values of exogenous variables are shared.
1 code implementation • 1 Oct 2022 • Cian Eastwood, Andrei Liviu Nicolicioiu, Julius von Kügelgen, Armin Kekić, Frederik Träuble, Andrea Dittadi, Bernhard Schölkopf
In representation learning, a common approach is to seek representations which disentangle the underlying factors of variation.
2 code implementations • 20 Jul 2022 • Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf
By minimizing the $\alpha$-quantile of predictor's risk distribution over domains, QRM seeks predictors that perform well with probability $\alpha$.
1 code implementation • 6 Jun 2022 • Patrik Reizinger, Luigi Gresele, Jack Brady, Julius von Kügelgen, Dominik Zietlow, Bernhard Schölkopf, Georg Martius, Wieland Brendel, Michel Besserve
Leveraging self-consistency, we show that the ELBO converges to a regularized log-likelihood.
1 code implementation • 4 Jun 2022 • Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius von Kügelgen
In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest.
no code implementations • 1 Apr 2022 • Bernhard Schölkopf, Julius von Kügelgen
We describe basic ideas underlying research to build and understand artificially intelligent systems: from symbolic approaches via statistical learning to interventional models relying on concepts of causality.
no code implementations • 14 Feb 2022 • Shubhangi Ghosh, Luigi Gresele, Julius von Kügelgen, Michel Besserve, Bernhard Schölkopf
Model identifiability is a desirable property in the context of unsupervised representation learning.
1 code implementation • 2 Feb 2022 • Luigi Gresele, Julius von Kügelgen, Jonas M. Kübler, Elke Kirschbaum, Bernhard Schölkopf, Dominik Janzing
We introduce an approach to counterfactual inference based on merging information from multiple datasets.
1 code implementation • 13 Oct 2021 • Matthias Tangemann, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge, Bernhard Schölkopf
Learning generative object models from unlabelled videos is a long standing problem and required for causal scene modeling.
no code implementations • ICLR 2022 • Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf
Applying this procedure to state-of-the-art trajectory prediction methods on standard benchmark datasets shows that they are, in fact, unable to reason about interactions.
1 code implementation • EMNLP 2021 • Zhijing Jin, Julius von Kügelgen, Jingwei Ni, Tejas Vaidhya, Ayush Kaushal, Mrinmaya Sachan, Bernhard Schölkopf
The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other.
1 code implementation • ICLR 2022 • Lukas Schott, Julius von Kügelgen, Frederik Träuble, Peter Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel
An important component for generalization in machine learning is to uncover underlying latent factors of variation as well as the mechanism through which each factor acts in the world.
no code implementations • NeurIPS 2021 • Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter Gehler
; and (ii) if the new predictions differ from the current ones, should we update?
no code implementations • 22 Jun 2021 • Julius von Kügelgen, Nikita Agarwal, Jakob Zeitler, Afsaneh Mastouri, Bernhard Schölkopf
Algorithmic recourse aims to provide actionable recommendations to individuals to obtain a more favourable outcome from an automated decision-making system.
1 code implementation • NeurIPS 2021 • Luigi Gresele, Julius von Kügelgen, Vincent Stimper, Bernhard Schölkopf, Michel Besserve
Specifically, our approach is motivated by thinking of each source as independently influencing the mixing process.
1 code implementation • NeurIPS 2021 • Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, Francesco Locatello
A common practice is to perform data augmentation via hand-crafted transformations intended to leave the semantics of the data invariant.
Ranked #1 on
Image Classification
on Causal3DIdent
1 code implementation • 13 Oct 2020 • Julius von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, Bernhard Schölkopf
Algorithmic fairness is typically studied from the perspective of predictions.
1 code implementation • NeurIPS 2020 • Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, Isabel Valera
Recent work has discussed the limitations of counterfactual explanations to recommend actions for algorithmic recourse, and argued for the need of taking causal relationships between features into consideration.
1 code implementation • 14 May 2020 • Julius von Kügelgen, Luigi Gresele, Bernhard Schölkopf
We point out limitations and extensions for future work, and, finally, discuss the role of causal reasoning in the broader context of using AI to combat the Covid-19 pandemic.
Applications Methodology
no code implementations • 27 Apr 2020 • Julius von Kügelgen, Ivan Ustyuzhaninov, Peter Gehler, Matthias Bethge, Bernhard Schölkopf
Learning how to model complex scenes in a modular way with recombinable components is a pre-requisite for higher-order reasoning and acting in the physical world.
no code implementations • 9 Oct 2019 • Julius von Kügelgen, Paul K. Rubenstein, Bernhard Schölkopf, Adrian Weller
We study the problem of causal discovery through targeted interventions.
1 code implementation • 28 May 2019 • Julius von Kügelgen, Alexander Mey, Marco Loog, Bernhard Schölkopf
While the success of semi-supervised learning (SSL) is still not fully understood, Sch\"olkopf et al. (2012) have established a link to the principle of independent causal mechanisms.
1 code implementation • 20 Jul 2018 • Julius von Kügelgen, Alexander Mey, Marco Loog
Current methods for covariate-shift adaptation use unlabelled data to compute importance weights or domain-invariant features, while the final model is trained on labelled data only.