Search Results for author: Jun Xie

Found 60 papers, 27 papers with code

VoxelNextFusion: A Simple, Unified and Effective Voxel Fusion Framework for Multi-Modal 3D Object Detection

no code implementations5 Jan 2024 Ziying Song, Guoxin Zhang, Jun Xie, Lin Liu, Caiyan Jia, Shaoqing Xu, Zhepeng Wang

In particular, we propose a voxel-based image pipeline that involves projecting point clouds onto images to obtain both pixel- and patch-level features.

3D Object Detection Feature Importance +2

Improving Neural Machine Translation by Multi-Knowledge Integration with Prompting

no code implementations8 Dec 2023 Ke Wang, Jun Xie, Yuqi Zhang, Yu Zhao

In this work, we focus on how to integrate multi-knowledge, multiple types of knowledge, into NMT models to enhance the performance with prompting.

Machine Translation NMT +1

Technical Report for Argoverse Challenges on 4D Occupancy Forecasting

no code implementations27 Nov 2023 Pengfei Zheng, Kanokphan Lertniphonphan, Feng Chen, Siwei Chen, Bingchuan Sun, Jun Xie, Zhepeng Wang

This report presents our Le3DE2E_Occ solution for 4D Occupancy Forecasting in Argoverse Challenges at CVPR 2023 Workshop on Autonomous Driving (WAD).

Autonomous Driving

Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation

1 code implementation26 May 2023 Zhiwei Cao, Baosong Yang, Huan Lin, Suhang Wu, Xiangpeng Wei, Dayiheng Liu, Jun Xie, Min Zhang, Jinsong Su

$k$-Nearest neighbor machine translation ($k$NN-MT) has attracted increasing attention due to its ability to non-parametrically adapt to new translation domains.

Domain Adaptation Machine Translation +3

Leveraging Large Language Models in Conversational Recommender Systems

no code implementations13 May 2023 Luke Friedman, Sameer Ahuja, David Allen, Zhenning Tan, Hakim Sidahmed, Changbo Long, Jun Xie, Gabriel Schubiner, Ajay Patel, Harsh Lara, Brian Chu, Zexi Chen, Manoj Tiwari

A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue.

Common Sense Reasoning Dialogue Management +3

From Statistical Methods to Deep Learning, Automatic Keyphrase Prediction: A Survey

no code implementations4 May 2023 Binbin Xie, Jia Song, Liangying Shao, Suhang Wu, Xiangpeng Wei, Baosong Yang, Huan Lin, Jun Xie, Jinsong Su

In this paper, we comprehensively summarize representative studies from the perspectives of dominant models, datasets and evaluation metrics.

Video-kMaX: A Simple Unified Approach for Online and Near-Online Video Panoptic Segmentation

no code implementations10 Apr 2023 Inkyu Shin, Dahun Kim, Qihang Yu, Jun Xie, Hong-Seok Kim, Bradley Green, In So Kweon, Kuk-Jin Yoon, Liang-Chieh Chen

The meta architecture of the proposed Video-kMaX consists of two components: within clip segmenter (for clip-level segmentation) and cross-clip associater (for association beyond clips).

Scene Understanding Segmentation +2

Towards Fine-Grained Information: Identifying the Type and Location of Translation Errors

no code implementations17 Feb 2023 Keqin Bao, Yu Wan, Dayiheng Liu, Baosong Yang, Wenqiang Lei, Xiangnan He, Derek F. Wong, Jun Xie

In this paper, we propose Fine-Grained Translation Error Detection (FG-TED) task, aiming at identifying both the position and the type of translation errors on given source-hypothesis sentence pairs.

Position Sentence +1

WR-ONE2SET: Towards Well-Calibrated Keyphrase Generation

1 code implementation13 Nov 2022 Binbin Xie, Xiangpeng Wei, Baosong Yang, Huan Lin, Jun Xie, Xiaoli Wang, Min Zhang, Jinsong Su

Keyphrase generation aims to automatically generate short phrases summarizing an input document.

Keyphrase Generation

Alibaba-Translate China's Submission for WMT 2022 Quality Estimation Shared Task

1 code implementation18 Oct 2022 Keqin Bao, Yu Wan, Dayiheng Liu, Baosong Yang, Wenqiang Lei, Xiangnan He, Derek F. Wong, Jun Xie

In this paper, we present our submission to the sentence-level MQM benchmark at Quality Estimation Shared Task, named UniTE (Unified Translation Evaluation).

Sentence XLM-R

Non-Parametric Domain Adaptation for End-to-End Speech Translation

1 code implementation23 May 2022 Yichao Du, Weizhi Wang, Zhirui Zhang, Boxing Chen, Tong Xu, Jun Xie, Enhong Chen

End-to-End Speech Translation (E2E-ST) has received increasing attention due to the potential of its less error propagation, lower latency, and fewer parameters.

Domain Adaptation Translation

Tailor: A Prompt-Based Approach to Attribute-Based Controlled Text Generation

no code implementations28 Apr 2022 Kexin Yang, Dayiheng Liu, Wenqiang Lei, Baosong Yang, Mingfeng Xue, Boxing Chen, Jun Xie

We experimentally find that these prompts can be simply concatenated as a whole to multi-attribute CTG without any re-training, yet raises problems of fluency decrease and position sensitivity.

Attribute Position +1

Learning to Generalize to More: Continuous Semantic Augmentation for Neural Machine Translation

2 code implementations ACL 2022 Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng, Weihua Luo, Jun Xie, Rong Jin

Although data augmentation is widely used to enrich the training data, conventional methods with discrete manipulations fail to generate diverse and faithful training samples.

Data Augmentation Machine Translation +3

Automatic Song Translation for Tonal Languages

no code implementations Findings (ACL) 2022 Fenfei Guo, Chen Zhang, Zhirui Zhang, Qixin He, Kejun Zhang, Jun Xie, Jordan Boyd-Graber

This paper develops automatic song translation (AST) for tonal languages and addresses the unique challenge of aligning words' tones with melody of a song in addition to conveying the original meaning.


Regularizing End-to-End Speech Translation with Triangular Decomposition Agreement

1 code implementation21 Dec 2021 Yichao Du, Zhirui Zhang, Weizhi Wang, Boxing Chen, Jun Xie, Tong Xu

In this paper, we attempt to model the joint probability of transcription and translation based on the speech input to directly leverage such triplet data.

Automatic Speech Recognition Automatic Speech Recognition (ASR) +4

KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D

2 code implementations28 Sep 2021 Yiyi Liao, Jun Xie, Andreas Geiger

For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics have progressed largely independently from each other.

Novel View Synthesis Scene Understanding +2

Non-Parametric Online Learning from Human Feedback for Neural Machine Translation

1 code implementation23 Sep 2021 Dongqi Wang, Haoran Wei, Zhirui Zhang, ShuJian Huang, Jun Xie, Jiajun Chen

We study the problem of online learning with human feedback in the human-in-the-loop machine translation, in which the human translators revise the machine-generated translations and then the corrected translations are used to improve the neural machine translation (NMT) system.

Machine Translation NMT +1

Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation

1 code implementation Findings (EMNLP) 2021 Xin Zheng, Zhirui Zhang, ShuJian Huang, Boxing Chen, Jun Xie, Weihua Luo, Jiajun Chen

Recently, $k$NN-MT has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level $k$-nearest-neighbor ($k$NN) retrieval to achieve domain adaptation without retraining.

Machine Translation NMT +3

Rethinking Zero-shot Neural Machine Translation: From a Perspective of Latent Variables

1 code implementation Findings (EMNLP) 2021 Weizhi Wang, Zhirui Zhang, Yichao Du, Boxing Chen, Jun Xie, Weihua Luo

However, it usually suffers from capturing spurious correlations between the output language and language invariant semantics due to the maximum likelihood training objective, leading to poor transfer performance on zero-shot translation.

Denoising Machine Translation +2

Product-oriented Machine Translation with Cross-modal Cross-lingual Pre-training

1 code implementation25 Aug 2021 Yuqing Song, ShiZhe Chen, Qin Jin, Wei Luo, Jun Xie, Fei Huang

Firstly, there are many specialized jargons in the product description, which are ambiguous to translate without the product image.

Machine Translation Translation

DeepLab2: A TensorFlow Library for Deep Labeling

4 code implementations17 Jun 2021 Mark Weber, Huiyu Wang, Siyuan Qiao, Jun Xie, Maxwell D. Collins, Yukun Zhu, Liangzhe Yuan, Dahun Kim, Qihang Yu, Daniel Cremers, Laura Leal-Taixe, Alan L. Yuille, Florian Schroff, Hartwig Adam, Liang-Chieh Chen

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a state-of-the-art and easy-to-use TensorFlow codebase for general dense pixel prediction problems in computer vision.

Context-Interactive Pre-Training for Document Machine Translation

no code implementations NAACL 2021 Pengcheng Yang, Pei Zhang, Boxing Chen, Jun Xie, Weihua Luo

Document machine translation aims to translate the source sentence into the target language in the presence of additional contextual information.

Machine Translation Sentence +1

What Have We Achieved on Text Summarization?

1 code implementation EMNLP 2020 Dandan Huang, Leyang Cui, Sen yang, Guangsheng Bao, Kun Wang, Jun Xie, Yue Zhang

Deep learning has led to significant improvement in text summarization with various methods investigated and improved ROUGE scores reported over the years.

Text Summarization

Neural Simile Recognition with Cyclic Multitask Learning and Local Attention

1 code implementation19 Dec 2019 Jiali Zeng, Linfeng Song, Jinsong Su, Jun Xie, Wei Song, Jiebo Luo

Simile recognition is to detect simile sentences and to extract simile components, i. e., tenors and vehicles.

Sentence Sentence Classification

A Reinforced Generation of Adversarial Examples for Neural Machine Translation

1 code implementation ACL 2020 Wei Zou, Shu-Jian Huang, Jun Xie, Xin-yu Dai, Jia-Jun Chen

Neural machine translation systems tend to fail on less decent inputs despite its significant efficacy, which may significantly harm the credibility of this systems-fathoming how and when neural-based systems fail in such cases is critical for industrial maintenance.

Machine Translation Translation

Specificity-Driven Cascading Approach for Unsupervised Sentiment Modification

no code implementations IJCNLP 2019 Pengcheng Yang, Junyang Lin, Jingjing Xu, Jun Xie, Qi Su, Xu sun

The task of unsupervised sentiment modification aims to reverse the sentiment polarity of the input text while preserving its semantic content without any parallel data.


Towards Linear Time Neural Machine Translation with Capsule Networks

no code implementations IJCNLP 2019 Mingxuan Wang, Jun Xie, Zhixing Tan, Jinsong Su, Deyi Xiong, Lei LI

In this study, we first investigate a novel capsule network with dynamic routing for linear time Neural Machine Translation (NMT), referred as \textsc{CapsNMT}.

Machine Translation NMT +2

Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures

1 code implementation27 Aug 2018 Yaowu Liu, Jun Xie

We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures.

Methodology Statistics Theory Statistics Theory

Deep Semantic Role Labeling with Self-Attention

1 code implementation5 Dec 2017 Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen, Xiaodong Shi

Semantic Role Labeling (SRL) is believed to be a crucial step towards natural language understanding and has been widely studied.

Natural Language Understanding Semantic Role Labeling

Intra-and-Inter-Constraint-based Video Enhancement based on Piecewise Tone Mapping

no code implementations21 Feb 2015 Yuanzhe Chen, Weiyao Lin, Chongyang Zhang, Zhenzhong Chen, Ning Xu, Jun Xie

In this paper, we propose a new intra-and-inter-constraint-based video enhancement approach aiming to 1) achieve high intra-frame quality of the entire picture where multiple region-of-interests (ROIs) can be adaptively and simultaneously enhanced, and 2) guarantee the inter-frame quality consistencies among video frames.

Tone Mapping Video Enhancement

Cannot find the paper you are looking for? You can Submit a new open access paper.