no code implementations • 6 Nov 2024 • Jilan Mei, Junbo Li, Cai Meng
This paper proposes a new method for accurate and robust 6D pose estimation of novel objects, named GS2Pose.
no code implementations • 6 Nov 2024 • Tianhua Tao, Junbo Li, Bowen Tan, Hongyi Wang, William Marshall, Bhargav M Kanakiya, Joel Hestness, Natalia Vassilieva, Zhiqiang Shen, Eric P. Xing, Zhengzhong Liu
In this work, we propose a pretraining strategy to enhance the integration of natural language and coding capabilities within a single LLM.
2 code implementations • 30 Sep 2024 • Kevin Wang, Junbo Li, Neel P. Bhatt, Yihan Xi, Qiang Liu, Ufuk Topcu, Zhangyang Wang
Recent advancements in Large Language Models (LLMs) have showcased their ability to perform complex reasoning tasks, but their effectiveness in planning remains underexplored.
1 code implementation • 28 Jun 2024 • Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang, Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo Li, Haonan Li, Preslav Nakov, Timothy Baldwin, Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, Zhiqiang Shen
To address this problem, we propose $\texttt{Web2Code}$, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs.
no code implementations • 5 Apr 2024 • Junbo Li, Keyan Chen, Gengju Tian, Lu Li, Zhenwei Shi
The Mini-ASPP and PSA are specifically designed for shadow feature enhancement, thereby enabling the expression of local details and small objects.
1 code implementation • 16 Feb 2024 • Junbo Li, Zichen Miao, Qiang Qiu, Ruqi Zhang
Bayesian neural networks (BNNs) offer uncertainty quantification but come with the downside of substantially increased training and inference costs.
1 code implementation • 11 Dec 2023 • Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, Eric P. Xing
The recent surge in open-source Large Language Models (LLMs), such as LLaMA, Falcon, and Mistral, provides diverse options for AI practitioners and researchers.
no code implementations • 28 Apr 2023 • Patrick Bajari, Zhihao Cen, Victor Chernozhukov, Manoj Manukonda, Suhas Vijaykunar, Jin Wang, Ramon Huerta, Junbo Li, Ling Leng, George Monokroussos, Shan Wan
To accomplish this, we generate abstract product attributes, or ``features,'' from text descriptions and images using deep neural networks, and then use these attributes to estimate the hedonic price function.
no code implementations • 10 Jan 2023 • Chen Wang, Angtian Wang, Junbo Li, Alan Yuille, Cihang Xie
We find that NeRF-based models are significantly degraded in the presence of corruption, and are more sensitive to a different set of corruptions than image recognition models.
1 code implementation • 28 Dec 2021 • Gene Li, Junbo Li, Anmol Kabra, Nathan Srebro, Zhaoran Wang, Zhuoran Yang
We propose an optimistic model-based algorithm, dubbed SMRL, for finite-horizon episodic reinforcement learning (RL) when the transition model is specified by exponential family distributions with $d$ parameters and the reward is bounded and known.
6 code implementations • 13 Jan 2019 • Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.