no code implementations • 5 Mar 2025 • Gangwei Xu, Jiaxin Liu, Xianqi Wang, Junda Cheng, Yong Deng, Jinliang Zang, Yurui Chen, Xin Yang
State-of-the-art stereo matching methods typically use costly 3D convolutions to aggregate a full cost volume, but their computational demands make mobile deployment challenging.
no code implementations • 15 Jan 2025 • Xianqi Wang, Hao Yang, Gangwei Xu, Junda Cheng, Min Lin, Yong Deng, Jinliang Zang, Yurui Chen, Xin Yang
This pipeline utilizes arbitrary single images as left images and pseudo disparities generated by a monocular depth estimation model to synthesize high-quality corresponding right images.
1 code implementation • 15 Jan 2025 • Junda Cheng, Longliang Liu, Gangwei Xu, Xianqi Wang, Zhaoxing Zhang, Yong Deng, Jinliang Zang, Yurui Chen, Zhipeng Cai, Xin Yang
The refined monodepth is in turn guides stereo effectively at ill-posed regions.
no code implementations • 22 Dec 2024 • Zhaoxing Zhang, Junda Cheng, Gangwei Xu, Xiaoxiang Wang, Can Zhang, Xin Yang
Recent approaches to VO have significantly improved performance by using deep networks to predict optical flow between video frames.
no code implementations • 16 Dec 2024 • Junda Cheng, Zhipeng Cai, Zhaoxing Zhang, Wei Yin, Matthias Muller, Michael Paulitsch, Xin Yang
We propose Robust Metric Visual Odometry (RoMeO), a novel method that resolves these issues leveraging priors from pre-trained depth models.
2 code implementations • 1 Sep 2024 • Gangwei Xu, Xianqi Wang, Zhaoxing Zhang, Junda Cheng, Chunyuan Liao, Xin Yang
We further propose a selective geometry feature fusion module to adaptively fuse multi-range and multi-granularity geometry features in MGEV.
1 code implementation • CVPR 2024 • Zhipeng Cai, Matthias Mueller, Reiner Birkl, Diana Wofk, Shao-Yen Tseng, Junda Cheng, Gabriela Ben-Melech Stan, Vasudev Lal, Michael Paulitsch
However, the lack of global scene layout priors leads to subpar outputs with duplicated objects (e. g., multiple beds in a bedroom) or requires time-consuming human text inputs for each view.
1 code implementation • CVPR 2024 • Junda Cheng, Wei Yin, Kaixuan Wang, Xiaozhi Chen, Shijie Wang, Xin Yang
In this work, we propose a new robustness benchmark to evaluate the depth estimation system under various noisy pose settings.
Ranked #1 on
Monocular Depth Estimation
on DDAD
1 code implementation • 4 Nov 2023 • Miaojie Feng, Junda Cheng, Hao Jia, Longliang Liu, Gangwei Xu, Qingyong Hu, Xin Yang
This architecture mitigates the multi-peak distribution problem in matching through the multi-peak lookup strategy, and integrates the coarse-to-fine concept into the iterative framework via the cascade search range.
3 code implementations • 23 Sep 2022 • Gangwei Xu, Yun Wang, Junda Cheng, Jinhui Tang, Xin Yang
In this paper, we present a novel cost volume construction method, named attention concatenation volume (ACV), which generates attention weights from correlation clues to suppress redundant information and enhance matching-related information in the concatenation volume.
2 code implementations • CVPR 2022 • Gangwei Xu, Junda Cheng, Peng Guo, Xin Yang
Stereo matching is a fundamental building block for many vision and robotics applications.
Ranked #1 on
Stereo Depth Estimation
on Spring