Search Results for author: Junsong Chen

Found 13 papers, 8 papers with code

HART: Efficient Visual Generation with Hybrid Autoregressive Transformer

2 code implementations14 Oct 2024 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao Lu, Song Han

To address these challenges, we present the hybrid tokenizer, which decomposes the continuous latents from the autoencoder into two components: discrete tokens representing the big picture and continuous tokens representing the residual components that cannot be represented by the discrete tokens.

Image Generation Image Reconstruction

Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models

1 code implementation14 Oct 2024 Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, Song Han

With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality.

Image Generation

PIXART-δ: Fast and Controllable Image Generation with Latent Consistency Models

1 code implementation10 Jan 2024 Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, Zhenguo Li

As a state-of-the-art, open-source image generation model, PIXART-{\delta} offers a promising alternative to the Stable Diffusion family of models, contributing significantly to text-to-image synthesis.

Image Generation

Fast Training of Diffusion Transformer with Extreme Masking for 3D Point Clouds Generation

no code implementations12 Dec 2023 Shentong Mo, Enze Xie, Yue Wu, Junsong Chen, Matthias Nießner, Zhenguo Li

Motivated by the inherent redundancy of 3D compared to 2D, we propose FastDiT-3D, a novel masked diffusion transformer tailored for efficient 3D point cloud generation, which greatly reduces training costs.

3D Generation Denoising +1

PixArt-$α$: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis

3 code implementations30 Sep 2023 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, Zhenguo Li

We hope PIXART-$\alpha$ will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.

Image Generation Language Modelling

MetaBEV: Solving Sensor Failures for BEV Detection and Map Segmentation

1 code implementation19 Apr 2023 Chongjian Ge, Junsong Chen, Enze Xie, Zhongdao Wang, Lanqing Hong, Huchuan Lu, Zhenguo Li, Ping Luo

These queries are then processed iteratively by a BEV-Evolving decoder, which selectively aggregates deep features from either LiDAR, cameras, or both modalities.

3D Object Detection Autonomous Driving +3

DeepAccident: A Motion and Accident Prediction Benchmark for V2X Autonomous Driving

no code implementations3 Apr 2023 Tianqi Wang, Sukmin Kim, Wenxuan Ji, Enze Xie, Chongjian Ge, Junsong Chen, Zhenguo Li, Ping Luo

In addition, we propose a new task, end-to-end motion and accident prediction, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms.

3D Object Detection Autonomous Driving +2

MetaBEV: Solving Sensor Failures for 3D Detection and Map Segmentation

no code implementations ICCV 2023 Chongjian Ge, Junsong Chen, Enze Xie, Zhongdao Wang, Lanqing Hong, Huchuan Lu, Zhenguo Li, Ping Luo

These queries are then processed iteratively by a BEV-Evolving decoder, which selectively aggregates deep features from either LiDAR, cameras, or both modalities.

3D Object Detection Autonomous Driving +3

Cannot find the paper you are looking for? You can Submit a new open access paper.