no code implementations • 25 Oct 2022 • Youngin Cho, Junsoo Lee, Soyoung Yang, Juntae Kim, Yeojeong Park, Haneol Lee, Mohammad Azam Khan, Daesik Kim, Jaegul Choo
Existing deep interactive colorization models have focused on ways to utilize various types of interactions, such as point-wise color hints, scribbles, or natural-language texts, as methods to reflect a user's intent at runtime.
no code implementations • 21 Dec 2021 • Kangyeol Kim, Sunghyun Park, Junsoo Lee, Joonseok Lee, Sookyung Kim, Jaegul Choo, Edward Choi
In order to perform unconditional video generation, we must learn the distribution of the real-world videos.
1 code implementation • 15 Nov 2021 • Kangyeol Kim, Sunghyun Park, Jaeseong Lee, Sunghyo Chung, Junsoo Lee, Jaegul Choo
We present a novel Animation CelebHeads dataset (AnimeCeleb) to address an animation head reenactment.
no code implementations • 1 Jan 2021 • Junsoo Lee, Hojoon Lee, Inkyu Shin, Jaekyoung Bae, In So Kweon, Jaegul Choo
Learning visual representations using large-scale unlabelled images is a holy grail for most of computer vision tasks.
1 code implementation • 16 Oct 2020 • Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo, Joonseok Lee, Sookyung Kim, Edward Choi
Video generation models often operate under the assumption of fixed frame rates, which leads to suboptimal performance when it comes to handling flexible frame rates (e. g., increasing the frame rate of the more dynamic portion of the video as well as handling missing video frames).
no code implementations • CVPR 2020 • Junsoo Lee, Eungyeup Kim, Yunsung Lee, Dongjun Kim, Jaehyuk Chang, Jaegul Choo
However, it is difficult to prepare for a training data set that has a sufficient amount of semantically meaningful pairs of images as well as the ground truth for a colored image reflecting a given reference (e. g., coloring a sketch of an originally blue car given a reference green car).
1 code implementation • 9 Jun 2019 • Seungjoo Yoo, Hyojin Bahng, Sunghyo Chung, Junsoo Lee, Jaehyuk Chang, Jaegul Choo
Despite recent advancements in deep learning-based automatic colorization, they are still limited when it comes to few-shot learning.