1 code implementation • 1 Sep 2022 • Xiaoran Zhang, Chenyu You, Shawn Ahn, Juntang Zhuang, Lawrence Staib, James Duncan
Learning spatial-temporal correspondences in cardiac motion from images is important for understanding the underlying dynamics of cardiac anatomical structures.
1 code implementation • ICLR 2022 • Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar Tatikonda, James Duncan, Ting Liu
Instead, we define a \textit{surrogate gap}, a measure equivalent to the dominant eigenvalue of Hessian at a local minimum when the radius of the neighborhood (to derive the perturbed loss) is small.
2 code implementations • NeurIPS 2021 • Juntang Zhuang, Yifan Ding, Tommy Tang, Nicha Dvornek, Sekhar Tatikonda, James S. Duncan
We demonstrate that ACProp has a convergence rate of $O(\frac{1}{\sqrt{T}})$ for the stochastic non-convex case, which matches the oracle rate and outperforms the $O(\frac{logT}{\sqrt{T}})$ rate of RMSProp and Adam.
no code implementations • 15 Apr 2021 • Nicha C. Dvornek, Xiaoxiao Li, Juntang Zhuang, Pamela Ventola, James S. Duncan
Heterogeneous presentation of a neurological disorder suggests potential differences in the underlying pathophysiological changes that occur in the brain.
no code implementations • 14 Feb 2021 • Juntang Zhuang, Nicha Dvornek, Sekhar Tatikonda, Xenophon Papademetris, Pamela Ventola, James Duncan
Furthermore, MSA uses the adjoint method for accurate gradient estimation in the ODE; since the adjoint method is generic, MSA is a generic method for both linear and non-linear systems, and does not require re-derivation of the algorithm as in EM.
1 code implementation • ICLR 2021 • Juntang Zhuang, Nicha C. Dvornek, Sekhar Tatikonda, James S. Duncan
Neural ordinary differential equations (Neural ODEs) are a new family of deep-learning models with continuous depth.
Ranked #19 on
Image Generation
on ImageNet 64x64
(Bits per dim metric)
no code implementations • NeurIPS Workshop DL-IG 2020 • Juntang Zhuang, Tommy Tang, Sekhar Tatikonda, Nicha C Dvornek, Yifan Ding, Xenophon Papademetris, James S Duncan
We propose AdaBelief optimizer to simultaneously achieve three goals: fast convergence as in adaptive methods, good generalization as in SGD, and training stability.
7 code implementations • NeurIPS 2020 • Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Papademetris, James S. Duncan
Viewing the exponential moving average (EMA) of the noisy gradient as the prediction of the gradient at the next time step, if the observed gradient greatly deviates from the prediction, we distrust the current observation and take a small step; if the observed gradient is close to the prediction, we trust it and take a large step.
no code implementations • 29 Jul 2020 • Xiaoxiao Li, Yuan Zhou, Nicha C. Dvornek, Muhan Zhang, Juntang Zhuang, Pamela Ventola, James S. Duncan
We propose an interpretable GNN framework with a novel salient region selection mechanism to determine neurological brain biomarkers associated with disorders.
no code implementations • 5 Jun 2020 • Markus D. Schirmer, Archana Venkataraman, Islem Rekik, Minjeong Kim, Stewart H. Mostofsky, Mary Beth Nebel, Keri Rosch, Karen Seymour, Deana Crocetti, Hassna Irzan, Michael Hütel, Sebastien Ourselin, Neil Marlow, Andrew Melbourne, Egor Levchenko, Shuo Zhou, Mwiza Kunda, Haiping Lu, Nicha C. Dvornek, Juntang Zhuang, Gideon Pinto, Sandip Samal, Jennings Zhang, Jorge L. Bernal-Rusiel, Rudolph Pienaar, Ai Wern Chung
A second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing.
2 code implementations • ICML 2020 • Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, James Duncan
Neural ordinary differential equations (NODEs) have recently attracted increasing attention; however, their empirical performance on benchmark tasks (e. g. image classification) are significantly inferior to discrete-layer models.
3 code implementations • 30 Jan 2020 • Max Allan, Satoshi Kondo, Sebastian Bodenstedt, Stefan Leger, Rahim Kadkhodamohammadi, Imanol Luengo, Felix Fuentes, Evangello Flouty, Ahmed Mohammed, Marius Pedersen, Avinash Kori, Varghese Alex, Ganapathy Krishnamurthi, David Rauber, Robert Mendel, Christoph Palm, Sophia Bano, Guinther Saibro, Chi-Sheng Shih, Hsun-An Chiang, Juntang Zhuang, Junlin Yang, Vladimir Iglovikov, Anton Dobrenkii, Madhu Reddiboina, Anubhav Reddy, Xingtong Liu, Cong Gao, Mathias Unberath, Myeonghyeon Kim, Chanho Kim, Chaewon Kim, Hye-Jin Kim, Gyeongmin Lee, Ihsan Ullah, Miguel Luna, Sang Hyun Park, Mahdi Azizian, Danail Stoyanov, Lena Maier-Hein, Stefanie Speidel
In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of ex-vivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models.
no code implementations • 15 Oct 2019 • Nicha C. Dvornek, Xiaoxiao Li, Juntang Zhuang, James S. Duncan
The addition of the generative model constrains the network to learn functional communities represented by the LSTM nodes that are both consistent with the data generation as well as useful for the classification task.
1 code implementation • 30 Sep 2019 • Juntang Zhuang, Nicha C. Dvornek, Xiaoxiao Li, Junlin Yang, James S. Duncan
We can determine the decision boundary of a linear classifier in the feature space; since the transform is invertible, we can invert the decision boundary from the feature space to the input space.
no code implementations • 25 Sep 2019 • Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, James S. Duncan
Inspired by neural ordinary differential equation (NODE) for data in the Euclidean domain, we extend the idea of continuous-depth models to graph data, and propose graph ordinary differential equation (GODE).
no code implementations • 27 Aug 2019 • Junlin Yang, Nicha C. Dvornek, Fan Zhang, Juntang Zhuang, Julius Chapiro, MingDe Lin, James S. Duncan
For the DA task, our DALACE model outperformed CycleGAN, TD-GAN , and DADR with DSC of 0. 847 compared to 0. 721, 0. 793 and 0. 806.
no code implementations • 9 Aug 2019 • Xiaoxiao Li, Nicha C. Dvornek, Juntang Zhuang, Pamela Ventola, James Duncan
Here, we model the whole brain fMRI as a graph, which preserves geometrical and temporal information and use a Graph Neural Network (GNN) to learn from the graph-structured fMRI data.
1 code implementation • 23 Jul 2019 • Juntang Zhuang, Nicha C. Dvornek, Xiaoxiao Li, Pamela Ventola, James S. Duncan
Recently deep learning methods have achieved success in the classification task of ASD using fMRI data.
no code implementations • 2 Jul 2019 • Xiaoxiao Li, Nicha C. Dvornek, Yuan Zhou, Juntang Zhuang, Pamela Ventola, James S. Duncan
Our pipeline can be generalized to other graph feature importance interpretation problems.
no code implementations • 14 Dec 2018 • Xiaoxiao Li, Nicha C. Dvornek, Yuan Zhou, Juntang Zhuang, Pamela Ventola, James S. Duncan
Cooperative game theory is advantageous here because it directly considers the interaction between features and can be applied to any machine learning method, making it a novel, more accurate way of determining instance-wise biomarker importance from deep learning models.
5 code implementations • 27 Nov 2018 • Juntang Zhuang, Junlin Yang, Lin Gu, Nicha Dvornek
Compared with real-time segmentation models such as BiSeNet, our model achieves higher accuracy at comparable speed on the Cityscapes Dataset, enabling the application in speed-demanding tasks such as street-scene understanding for autonomous driving.
Ranked #14 on
Semantic Segmentation
on PASCAL VOC 2012 test
(using extra training data)
3 code implementations • 17 Oct 2018 • Juntang Zhuang
A LadderNet has more paths for information flow because of skip connections and residual blocks, and can be viewed as an ensemble of Fully Convolutional Networks (FCN).
Ranked #6 on
Retinal Vessel Segmentation
on CHASE_DB1
no code implementations • 23 Aug 2018 • Xiaoxiao Li, Nicha C. Dvornek, Juntang Zhuang, Pamela Ventola, James S. Duncan
Therefore, in this work, we address the problem of interpreting reliable biomarkers associated with identifying ASD; specifically, we propose a 2-stage method that classifies ASD and control subjects using fMRI images and interprets the saliency features activated by the classifier.