no code implementations • 10 Dec 2024 • Tyler J. Kovach, Daniel Schug, M. A. Wolfe, E. R. MacQuarrie, Patrick J. Walsh, Jared Benson, Mark Friesen, M. A. Eriksson, Justyna P. Zwolak
Semiconductor quantum dot (QD) devices have become central to advancements in spin-based quantum computing.
no code implementations • 19 Nov 2024 • Anantha S. Rao, Donovan Buterakos, Barnaby van Straaten, Valentin John, Cécile X. Yu, Stefan D. Oosterhout, Lucas Stehouwer, Giordano Scappucci, Menno Veldhorst, Francesco Borsoi, Justyna P. Zwolak
Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor quantum dot systems.
no code implementations • 29 Jul 2024 • Anton Zubchenko, Danielle Middlebrooks, Torbjørn Rasmussen, Lara Lausen, Ferdinand Kuemmeth, Anasua Chatterjee, Justyna P. Zwolak
Semiconductor quantum dots (QDs) are a promising platform for multiple different qubit implementations, all of which are voltage controlled by programmable gate electrodes.
no code implementations • 21 Feb 2024 • Daniel Schug, Tyler J. Kovach, M. A. Wolfe, Jared Benson, Sanghyeok Park, J. P. Dodson, J. Corrigan, M. A. Eriksson, Justyna P. Zwolak
This work demonstrates the feasibility and advantages of applying explainable machine learning techniques to the analysis of quantum dot measurements, paving the way for further advances in automated and transparent QD device tuning.
no code implementations • 21 Dec 2023 • Justyna P. Zwolak, Jacob M. Taylor, Reed W. Andrews, Jared Benson, Garnett W. Bryant, Donovan Buterakos, Anasua Chatterjee, Sankar Das Sarma, Mark A. Eriksson, Eliška Greplová, Michael J. Gullans, Fabian Hader, Tyler J. Kovach, Pranav S. Mundada, Mick Ramsey, Torbjørn Rasmussen, Brandon Severin, Anthony Sigillito, Brennan Undseth, Brian Weber
Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers.
no code implementations • 18 Dec 2023 • Brian Weber, Justyna P. Zwolak
Gate-defined semiconductor quantum dot (QD) arrays are a promising platform for quantum computing.
no code implementations • 25 May 2023 • Daniel Schug, Sai Yerramreddy, Rich Caruana, Craig Greenberg, Justyna P. Zwolak
As the deployment of computer vision technology becomes increasingly common in science, the need for explanations of the system and its output has become a focus of great concern.
no code implementations • 20 Jan 2023 • Joshua Ziegler, Florian Luthi, Mick Ramsey, Felix Borjans, Guoji Zheng, Justyna P. Zwolak
Gate-defined quantum dots (QDs) have appealing attributes as a quantum computing platform.
no code implementations • 8 Sep 2022 • Joshua Ziegler, Florian Luthi, Mick Ramsey, Felix Borjans, Guoji Zheng, Justyna P. Zwolak
The success rate for the action-based tuning consistently surpasses 95 % on both simulated and experimental data suitable for off-line testing.
no code implementations • 17 May 2022 • Amilson R. Fritsch, Shangjie Guo, Sophia M. Koh, I. B. Spielman, Justyna P. Zwolak
We establish a dataset of over $1. 6\times10^4$ experimental images of Bose--Einstein condensates containing solitonic excitations to enable machine learning (ML) for many-body physics research.
no code implementations • 17 Dec 2021 • Justyna P. Zwolak, Jacob M. Taylor
Arrays of quantum dots (QDs) are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers.
1 code implementation • 8 Nov 2021 • Shangjie Guo, Sophia M. Koh, Amilson R. Fritsch, I. B. Spielman, Justyna P. Zwolak
In ultracold-atom experiments, data often comes in the form of images which suffer information loss inherent in the techniques used to prepare and measure the system.
1 code implementation • 30 Jul 2021 • Joshua Ziegler, Thomas McJunkin, E. S. Joseph, Sandesh S. Kalantre, Benjamin Harpt, D. E. Savage, M. G. Lagally, M. A. Eriksson, Jacob M. Taylor, Justyna P. Zwolak
In this work, we propose a framework for robust autotuning of QD devices that combines a machine learning (ML) state classifier with a data quality control module.
no code implementations • 17 Mar 2021 • Brian J. Weber, Sandesh S. Kalantre, Thomas McJunkin, Jacob M. Taylor, Justyna P. Zwolak
The problem of classifying high-dimensional shapes in real-world data grows in complexity as the dimension of the space increases.
no code implementations • 23 Feb 2021 • Justyna P. Zwolak, Thomas McJunkin, Sandesh S. Kalantre, Samuel F. Neyens, E. R. MacQuarrie, Mark A. Eriksson, Jacob M. Taylor
Traditional measurement techniques, relying on complete or near-complete exploration via two-parameter scans (images) of the device response, quickly become impractical with increasing numbers of gates.
no code implementations • 14 Jan 2021 • Shangjie Guo, Amilson R. Fritsch, Craig Greenberg, I. B. Spielman, Justyna P. Zwolak
Most data in cold-atom experiments comes from images, the analysis of which is limited by our preconceptions of the patterns that could be present in the data.
1 code implementation • 1 Oct 2020 • Justyna P. Zwolak, Sandesh S. Kalantre, Thomas McJunkin, Brian J. Weber, Jacob M. Taylor
While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice.
1 code implementation • 13 Dec 2017 • Sandesh S. Kalantre, Justyna P. Zwolak, Stephen Ragole, Xingyao Wu, Neil M. Zimmerman, M. D. Stewart, Jacob M. Taylor
Recent progress in building large-scale quantum devices for exploring quantum computing and simulation paradigms has relied upon effective tools for achieving and maintaining good experimental parameters, i. e. tuning up devices.
Quantum Physics