no code implementations • 13 Aug 2020 • Burhaneddin Yaman, Hongyi Gu, Seyed Amir Hossein Hosseini, Omer Burak Demirel, Steen Moeller, Jutta Ellermann, Kâmil Uğurbil, Mehmet Akçakaya
In this study, we propose an improved self-supervised learning strategy that more efficiently uses the acquired data to train a physics-guided reconstruction network without a database of fully-sampled data.
2 code implementations • 29 Apr 2020 • Arjun D. Desai, Francesco Caliva, Claudia Iriondo, Naji Khosravan, Aliasghar Mortazi, Sachin Jambawalikar, Drew Torigian, Jutta Ellermann, Mehmet Akcakaya, Ulas Bagci, Radhika Tibrewala, Io Flament, Matthew O`Brien, Sharmila Majumdar, Mathias Perslev, Akshay Pai, Christian Igel, Erik B. Dam, Sibaji Gaj, Mingrui Yang, Kunio Nakamura, Xiaojuan Li, Cem M. Deniz, Vladimir Juras, Ravinder Regatte, Garry E. Gold, Brian A. Hargreaves, Valentina Pedoia, Akshay S. Chaudhari
Purpose: To organize a knee MRI segmentation challenge for characterizing the semantic and clinical efficacy of automatic segmentation methods relevant for monitoring osteoarthritis progression.
2 code implementations • 16 Dec 2019 • Burhaneddin Yaman, Seyed Amir Hossein Hosseini, Steen Moeller, Jutta Ellermann, Kâmil Uğurbil, Mehmet Akçakaya
Results: Results on five different knee sequences at acceleration rate of 4 shows that proposed self-supervised approach performs closely with supervised learning, while significantly outperforming conventional compressed sensing and parallel imaging, as characterized by quantitative metrics and a clinical reader study.
1 code implementation • 21 Oct 2019 • Burhaneddin Yaman, Seyed Amir Hossein Hosseini, Steen Moeller, Jutta Ellermann, Kâmil Uǧurbil, Mehmet Akçakaya
In this work, we tackle this issue and propose a self-supervised learning strategy that enables physics-based DL reconstruction without fully-sampled data.