no code implementations • ICML 2020 • Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, Una-May O'Reilly
In this paper, we study the problem of constrained min-max optimization in a black-box setting, where the desired optimizer cannot access the gradients of the objective function but may query its values.
no code implementations • 12 Apr 2022 • Ling Liang, Kaidi Xu, Xing Hu, Lei Deng, Yuan Xie
To the best of our knowledge, this is the first analysis on robust training of SNNs.
no code implementations • NeurIPS 2021 • Husheng Han, Kaidi Xu, Xing Hu, Xiaobing Chen, Ling Liang, Zidong Du, Qi Guo, Yanzhi Wang, Yunji Chen
Our experimental results show that the certified accuracy is increased from 36. 3% (the state-of-the-art certified detection) to 60. 4% on the ImageNet dataset, largely pushing the certified defenses for practical use.
no code implementations • 29 Sep 2021 • Quanfu Fan, Kaidi Xu, Chun-Fu Chen, Sijia Liu, Gaoyuan Zhang, David Daniel Cox, Xue Lin
Physical adversarial attacks apply carefully crafted adversarial perturbations onto real objects to maliciously alter the prediction of object classifiers or detectors.
no code implementations • 29 Sep 2021 • huan zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, J Zico Kolter
In this work, we formulate an adversarial attack using a branch-and-bound (BaB) procedure on ReLU neural networks and search adversarial examples in the activation space corresponding to binary variables in a mixed integer programming (MIP) formulation.
no code implementations • NeurIPS 2021 • Shiqi Wang, huan zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, J Zico Kolter
We develop $\beta$-CROWN, a new bound propagation based method that can fully encode neuron split constraints in branch-and-bound (BaB) based complete verification via optimizable parameters $\beta$.
no code implementations • 15 Jun 2021 • Sheng Lin, Wei Jiang, Wei Wang, Kaidi Xu, Yanzhi Wang, Shan Liu, Songnan Li
Compressing Deep Neural Network (DNN) models to alleviate the storage and computation requirements is essential for practical applications, especially for resource limited devices.
no code implementations • 21 Apr 2021 • Kaidi Xu, Chenan Wang, Hao Cheng, Bhavya Kailkhura, Xue Lin, Ryan Goldhahn
To tackle the susceptibility of deep neural networks to examples, the adversarial training has been proposed which provides a notion of robust through an inner maximization problem presenting the first-order embedded within the outer minimization of the training loss.
3 code implementations • NeurIPS 2021 • Shiqi Wang, huan zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter
Compared to the typically tightest but very costly semidefinite programming (SDP) based incomplete verifiers, we obtain higher verified accuracy with three orders of magnitudes less verification time.
1 code implementation • ICLR 2021 • Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, Meng Wang
Despite the generalization power of the meta-model, it remains elusive that how adversarial robustness can be maintained by MAML in few-shot learning.
no code implementations • 21 Dec 2020 • Pranay Sharma, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Xue Lin, Pramod K. Varshney
In this work, we focus on the study of stochastic zeroth-order (ZO) optimization which does not require first-order gradient information and uses only function evaluations.
2 code implementations • ICLR 2021 • Kaidi Xu, huan zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, Cho-Jui Hsieh
Formal verification of neural networks (NNs) is a challenging and important problem.
no code implementations • 23 Aug 2020 • Kaidi Xu, Ming-Min Zhao, Yunlong Cai, Lajos Hanzo
An unmanned aerial vehicle (UAV)-aided secure communication system is conceived and investigated, where the UAV transmits legitimate information to a ground user in the presence of an eavesdropper (Eve).
1 code implementation • 15 Jun 2020 • Qiyu Hu, Yunlong Cai, Qingjiang Shi, Kaidi Xu, Guanding Yu, Zhi Ding
Then, we implement the proposed deepunfolding framework to solve the sum-rate maximization problem for precoding design in MU-MIMO systems.
5 code implementations • NeurIPS 2020 • Kaidi Xu, Zhouxing Shi, huan zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, Cho-Jui Hsieh
Linear relaxation based perturbation analysis (LiRPA) for neural networks, which computes provable linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness verification and certified defense.
no code implementations • 26 Feb 2020 • Kaidi Xu, Sijia Liu, Pin-Yu Chen, Pu Zhao, Xue Lin
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks.
no code implementations • 25 Feb 2020 • Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, Xue Lin
To overcome these limitations, we propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs in a generic and an efficient manner.
1 code implementation • CVPR 2020 • Shaokai Ye, Kailu Wu, Mu Zhou, Yunfei Yang, Sia Huat Tan, Kaidi Xu, Jiebo Song, Chenglong Bao, Kaisheng Ma
Existing domain adaptation methods aim at learning features that can be generalized among domains.
Ranked #2 on
Domain Adaptation
on USPS-to-MNIST
1 code implementation • ECCV 2020 • Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, Xue Lin
To the best of our knowledge, this is the first work that models the effect of deformation for designing physical adversarial examples with respect to-rigid objects such as T-shirts.
1 code implementation • NeurIPS 2019 • Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David Cox
In this paper, we propose a zeroth-order AdaMM (ZO-AdaMM) algorithm, that generalizes AdaMM to the gradient-free regime.
1 code implementation • 30 Sep 2019 • Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Minyi Hong, Una-May O'Reilly
In this paper, we study the problem of constrained robust (min-max) optimization ina black-box setting, where the desired optimizer cannot access the gradients of the objective function but may query its values.
no code implementations • 29 Sep 2019 • Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang, Yun Liang
To achieve real-time, highly-efficient implementations on FPGA, we present the detailed hardware implementation of block circulant matrices on CONV layers and develop an efficient processing element (PE) structure supporting the heterogeneous weight quantization, CONV dataflow and pipelining techniques, design optimization, and a template-based automatic synthesis framework to optimally exploit hardware resource.
1 code implementation • ICCV 2019 • Pu Zhao, Sijia Liu, Pin-Yu Chen, Nghia Hoang, Kaidi Xu, Bhavya Kailkhura, Xue Lin
Robust machine learning is currently one of the most prominent topics which could potentially help shaping a future of advanced AI platforms that not only perform well in average cases but also in worst cases or adverse situations.
1 code implementation • 10 Jun 2019 • Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin
Graph neural networks (GNNs) which apply the deep neural networks to graph data have achieved significant performance for the task of semi-supervised node classification.
no code implementations • 28 May 2019 • Shaokai Ye, Sia Huat Tan, Kaidi Xu, Yanzhi Wang, Chenglong Bao, Kaisheng Ma
On contrast, current state-of-the-art deep learning approaches heavily depend on the variety of training samples and the capacity of the network.
no code implementations • 3 Apr 2019 • Kaidi Xu, Sijia Liu, Gaoyuan Zhang, Mengshu Sun, Pu Zhao, Quanfu Fan, Chuang Gan, Xue Lin
It is widely known that convolutional neural networks (CNNs) are vulnerable to adversarial examples: images with imperceptible perturbations crafted to fool classifiers.
1 code implementation • 29 Mar 2019 • Shaokai Ye, Kaidi Xu, Sijia Liu, Jan-Henrik Lambrechts, huan zhang, Aojun Zhou, Kaisheng Ma, Yanzhi Wang, Xue Lin
Furthermore, this work studies two hypotheses about weight pruning in the conventional setting and finds that weight pruning is essential for reducing the network model size in the adversarial setting, training a small model from scratch even with inherited initialization from the large model cannot achieve both adversarial robustness and high standard accuracy.
2 code implementations • 23 Mar 2019 • Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma, Sheng Lin, Zhengang Li, Kaidi Xu, Wujie Wen, Sijia Liu, Jian Tang, Makan Fardad, Xue Lin, Yongpan Liu, Yanzhi Wang
A recent work developed a systematic frame-work of DNN weight pruning using the advanced optimization technique ADMM (Alternating Direction Methods of Multipliers), achieving one of state-of-art in weight pruning results.
no code implementations • ICLR 2019 • Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Kaidi Xu, Yunfei Yang, Fuxun Yu, Jian Tang, Makan Fardad, Sijia Liu, Xiang Chen, Xue Lin, Yanzhi Wang
Motivated by dynamic programming, the proposed method reaches extremely high pruning rate by using partial prunings with moderate pruning rates.
1 code implementation • ICLR 2019 • Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, huan zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi Wang, Xue Lin
When generating adversarial examples to attack deep neural networks (DNNs), Lp norm of the added perturbation is usually used to measure the similarity between original image and adversarial example.