Search Results for author: Kaikai An

Found 15 papers, 10 papers with code

Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering

1 code implementation11 Feb 2025 Shuzheng Si, Haozhe Zhao, Gang Chen, Cheng Gao, Yuzhuo Bai, Zhitong Wang, Kaikai An, Kangyang Luo, Chen Qian, Fanchao Qi, Baobao Chang, Maosong Sun

By considering data quality and avoiding unfamiliar data, we can utilize the selected data to effectively align LLMs to follow instructions and hallucinate less.

UltraEdit: Instruction-based Fine-Grained Image Editing at Scale

1 code implementation7 Jul 2024 Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, Baobao Chang

This paper presents UltraEdit, a large-scale (approximately 4 million editing samples), automatically generated dataset for instruction-based image editing.

Diversity

Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation

1 code implementation12 Apr 2024 Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Yufeng He, Kaikai An, Baobao Chang

Therefore, we introduce ALSACE to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data.

GAIA: Zero-shot Talking Avatar Generation

no code implementations26 Nov 2023 Tianyu He, Junliang Guo, Runyi Yu, Yuchi Wang, Jialiang Zhu, Kaikai An, Leyi Li, Xu Tan, Chunyu Wang, Han Hu, HsiangTao Wu, Sheng Zhao, Jiang Bian

Zero-shot talking avatar generation aims at synthesizing natural talking videos from speech and a single portrait image.

Diversity

ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code

1 code implementation16 Nov 2023 Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman Cohan, Mark Gerstein

Despite Large Language Models (LLMs) like GPT-4 achieving impressive results in function-level code generation, they struggle with repository-scale code understanding (e. g., coming up with the right arguments for calling routines), requiring a deeper comprehension of complex file interactions.

Code Generation Navigate +1

Coarse-to-Fine Dual Encoders are Better Frame Identification Learners

1 code implementation20 Oct 2023 Kaikai An, Ce Zheng, Bofei Gao, Haozhe Zhao, Baobao Chang

Recent researches measure the similarity or matching score between targets and candidate frames by modeling frame definitions.

Contrastive Learning Representation Learning +1

MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

2 code implementations14 Sep 2023 Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang, Wenjuan Han, Baobao Chang

In this paper, we address the limitation above by 1) introducing vision-language Model with Multi-Modal In-Context Learning(MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM's ability to understand complex multi-modal prompts.

Hallucination In-Context Learning +4

Towards Robust Aspect-based Sentiment Analysis through Non-counterfactual Augmentations

no code implementations24 Jun 2023 Xinyu Liu, Yan Ding, Kaikai An, Chunyang Xiao, Pranava Madhyastha, Tong Xiao, Jingbo Zhu

While state-of-the-art NLP models have demonstrated excellent performance for aspect based sentiment analysis (ABSA), substantial evidence has been presented on their lack of robustness.

Aspect-Based Sentiment Analysis Aspect-Based Sentiment Analysis (ABSA) +2

Cannot find the paper you are looking for? You can Submit a new open access paper.