Search Results for author: Kaiqiang Song

Found 15 papers, 13 papers with code

OASum: Large-Scale Open Domain Aspect-based Summarization

no code implementations19 Dec 2022 Xianjun Yang, Kaiqiang Song, Sangwoo Cho, Xiaoyang Wang, Xiaoman Pan, Linda Petzold, Dong Yu

Specifically, zero/few-shot and fine-tuning results show that the model pre-trained on our corpus demonstrates a strong aspect or query-focused generation ability compared with the backbone model.

NarraSum: A Large-Scale Dataset for Abstractive Narrative Summarization

1 code implementation2 Dec 2022 Chao Zhao, Faeze Brahman, Kaiqiang Song, Wenlin Yao, Dian Yu, Snigdha Chaturvedi

To encourage research in this direction, we propose NarraSum, a large-scale narrative summarization dataset.

Natural Language Understanding

Salience Allocation as Guidance for Abstractive Summarization

1 code implementation22 Oct 2022 Fei Wang, Kaiqiang Song, Hongming Zhang, Lifeng Jin, Sangwoo Cho, Wenlin Yao, Xiaoyang Wang, Muhao Chen, Dong Yu

Recent literature adds extractive summaries as guidance for abstractive summarization models to provide hints of salient content and achieves better performance.

Abstractive Text Summarization

Learning-by-Narrating: Narrative Pre-Training for Zero-Shot Dialogue Comprehension

1 code implementation ACL 2022 Chao Zhao, Wenlin Yao, Dian Yu, Kaiqiang Song, Dong Yu, Jianshu Chen

Comprehending a dialogue requires a model to capture diverse kinds of key information in the utterances, which are either scattered around or implicitly implied in different turns of conversations.

A New Approach to Overgenerating and Scoring Abstractive Summaries

1 code implementation NAACL 2021 Kaiqiang Song, Bingqing Wang, Zhe Feng, Fei Liu

We propose a new approach to generate multiple variants of the target summary with diverse content and varying lengths, then score and select admissible ones according to users' needs.

Text Summarization

Automatic Summarization of Open-Domain Podcast Episodes

no code implementations9 Nov 2020 Kaiqiang Song, Chen Li, Xiaoyang Wang, Dong Yu, Fei Liu

Instead, we investigate several less-studied aspects of neural abstractive summarization, including (i) the importance of selecting important segments from transcripts to serve as input to the summarizer; (ii) striking a balance between the amount and quality of training instances; (iii) the appropriate summary length and start/end points.

Abstractive Text Summarization

Controlling the Amount of Verbatim Copying in Abstractive Summarization

1 code implementation23 Nov 2019 Kaiqiang Song, Bingqing Wang, Zhe Feng, Liu Ren, Fei Liu

In this paper, we present a neural summarization model that, by learning from single human abstracts, can produce a broad spectrum of summaries ranging from purely extractive to highly generative ones.

Abstractive Text Summarization Language Modelling

Structure-Infused Copy Mechanisms for Abstractive Summarization

1 code implementation COLING 2018 Kaiqiang Song, Lin Zhao, Fei Liu

In this paper, we present structure-infused copy mechanisms to facilitate copying important words and relations from the source sentence to summary sentence.

Abstractive Text Summarization

Cannot find the paper you are looking for? You can Submit a new open access paper.